大脳新皮質のマスターアルゴリズムの候補としての

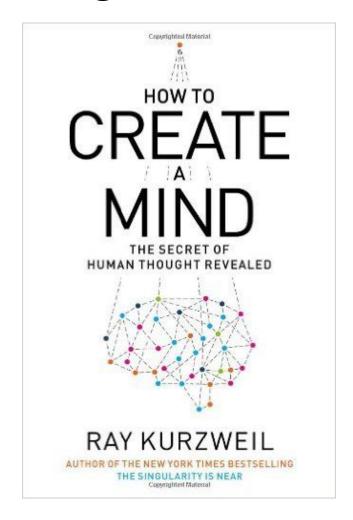
Hierarchical Temporal memory (HTM)

松田卓也 神戸大学名誉教授 2016/5/18 全脳アーキテクチャー勉強会 パナソニックセンター東京

J. Hawkins Ł R. Kurzweil

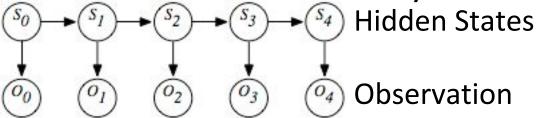
How to Create a Mind: The Secret of Human Thought Revealed

- Ray Kurzweil (2012)
- 汎用人工知能の作り方
 - 新皮質を模擬する
- ・脳はパターン認識機
 - 3億パターン=3*10^10/100
 - Hawkinsの影響
- 隠れマルコフモデル(HMM)
 - 音声認識
 - Nuance (Siri)
 - 手書き文字認識
 - Bio-Informatics



隠れマルコフモデルと ベイジアンネットワーク

Hidden Markov Model (HMM)



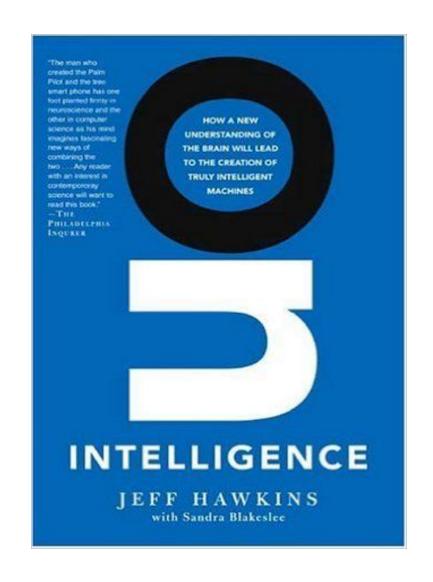
- Dynamic Bayesian Network (DBN)
 - 時間系列のモデル
 - HMMはDBNの一種
 - DBNはBayesian Network (BN)の一種
 - ・非循環有向グラフ(DAG)
- HTM理論との親和性

時間列を扱えるアルゴリズム Hawkins & Ahmad

	нтм	HMMs	LSTM
High order sequence	Yes	Limited	Yes
Discovers high order sequence structure	Yes	No	Yes
Local learning rules	Yes	No	No
Continuous learning	Yes	No	No
Multiple simultaneous predictions	Yes	No	No
Unsupervised learning	Yes	Yes	No
Robustness and fault tolerance	Very high No		Yes
Detailed mapping to neuroscience	Yes	No	No
Probabilistic model	No	Yes	No

On Intelligence

- Jeff Hawkins & Sandra Blakeslee (2004)
- 考える脳、考えるコン ピュータ
- ・ HTM理論の基本的考え 方
- ・新皮質の働きに関する 仮説
 - 脳は記憶-予測システム である



Hawkinsの目的

- 新皮質を模した機械知能を作る
 - 人間を作るのではない
 - ロボットを作るのでもない
 - ・基本的に新皮質のみ(+海馬、視床)
 - チューリングテストはナンセンス
 - 物を言わなくても考えることはできる
- ・目的は宇宙の探求
 - Demis Hassabisも同じ目的
 - 人工知能駆動科学?

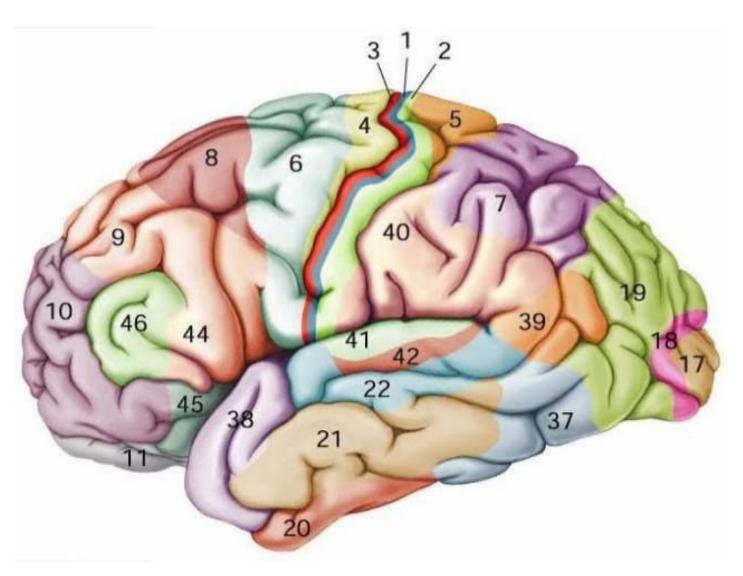
Numentaの歴史

- ・ミッション
 - 新皮質の基本動作原理を発見する
 - それに基づいて機械知能を作る
- 歴史
 - 2004 On Intelligence
 - 2005 Numenta
 - 2005-2009 First generation algorithm: Zeta 1
 - 2009-2014 Second generation algorithm: CLA
 - 2014-??? Third generation algorithm: G3

HTM理論の歴史

- ・ゼータ1アルゴリズム
 - Hawkins-George: 2005
 - 数学的、ベイジアンネットワーク理論と親和性
- Cortical Learning Algorithm (CLA)
 - 皮質学習アルゴリズム
 - より神経科学的
 - Hawkins-Ahmad: 2010
 - オンライン学習
 - Sparse Distributed Representation (SDR表現)
 - IBMが参入
- Gen 3 Algorithm: 2014-2016

新皮質の領野



Hawkinsの新皮質に対する考え

- 共通のアルゴリズム
- 階層構造と不変性
- ・時間系列と予測
- オンライン学習
- ・フィードバック
- 行動
- 注意
- ・新皮質の6層構造

共通のアルゴリズム

- ・新皮質はどこもほぼ一様
 - 構造的
 - -機能的
- Mountcastle
 - 視覚野と聴覚野の交換
 - フェレットでの実験
- しかし反論もあり
 - Gary Markus

階層構造と不変性

- 新皮質の領野は階層構造
 - ディープラーニング
 - HTMのゼータ1アルゴリズム
- 不変性
 - 階層を上がるとより抽象的な表現
 - 時間的に変化しにくくなる
 - •この性質がHTM理論のキモ
- ・ 図形の不変性
 - 移動、変形、回転、色、照明

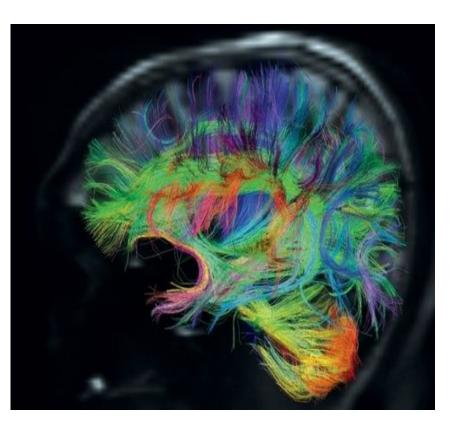
時間系列と予測

- 目はつねに動いている
 - サッケード
 - それでも動かないイメージ
 - 不変性
- ・ 聴覚は時間変化が本質
- ・触覚も時間変化が重要
- ・脳はつねに(一瞬先)を予測している

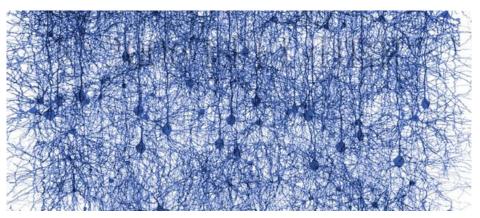
オンライン学習

- ・通常の機械学習とHTMゼータ1
 - オフライン学習、バッチ学習
 - 学習フェーズ
 - 推論フェーズ
- オンライン学習
 - 動物はつねに学習している
 - HTM-Cortical Learning Algorithm (CLA)ではこれ

コネクトーム

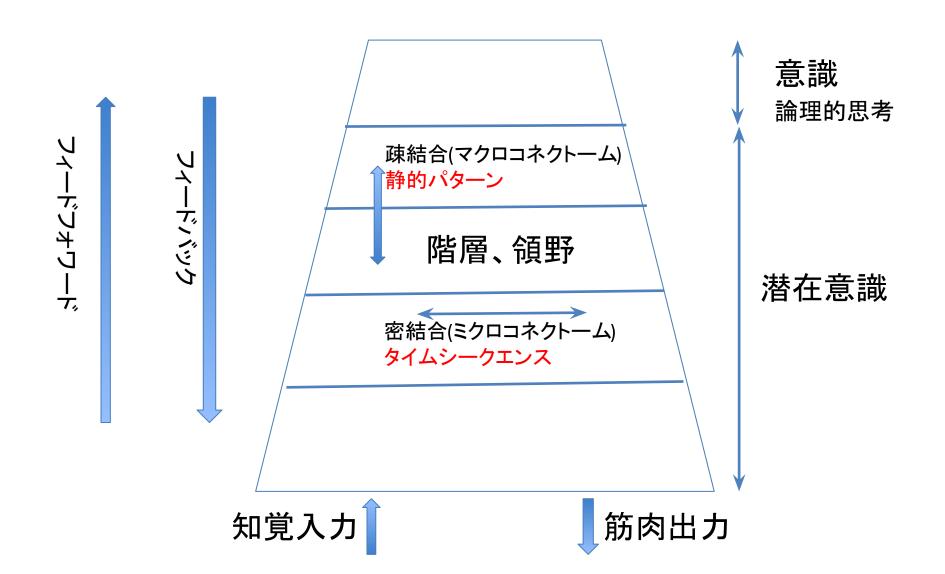


マクロなコネクトーム 領野間の接続



ミクロなコネクトーム ニューロン間のシナプス結合 領野内の接続

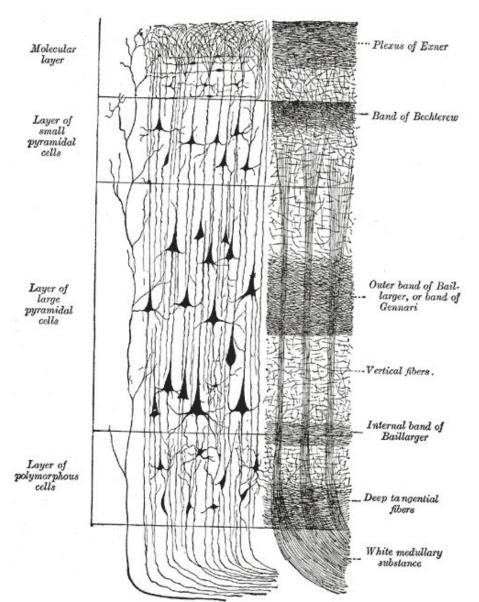
新皮質内の情報の流れ



フィードバック

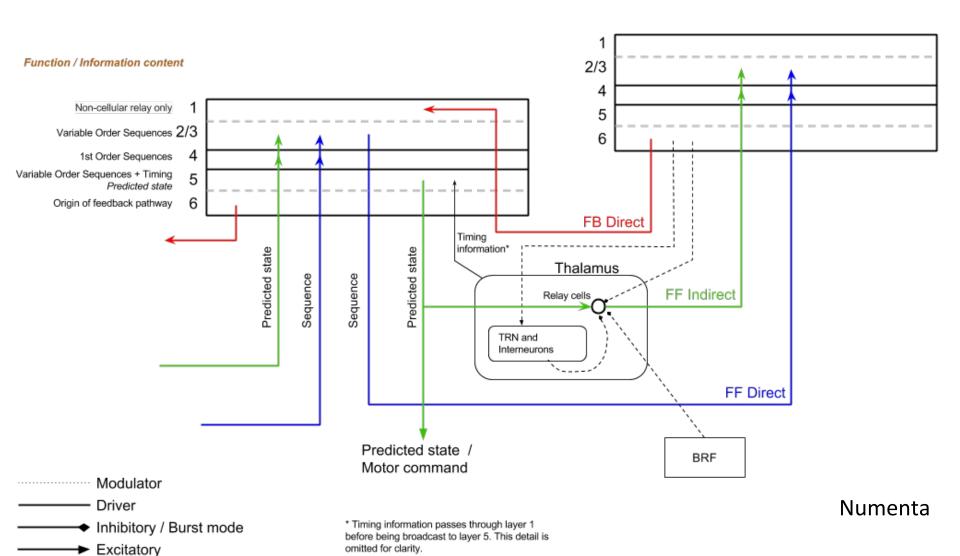
- ・新皮質内の情報の流れ
 - フィードフォワードFF(ボトムアップ)
 - フィードバックFB(トップダウン)
 - FBがFFの10倍
- 通常のDLはFFのみ
 - Back Propagationは別
- ベイジアンネットワークとしての性質
- ・ゼータ1にはあるが、CLAにはない

新皮質の6層構造



Numenta

6層構造と領野間の情報の流れ



時間列を扱えるアルゴリズム Hawkins & Ahmad

	нтм	HMMs	LSTM
High order sequence	Yes Limited		Yes
Discovers high order sequence structure	Yes	No	Yes
Local learning rules	Yes	No	No
Continuous learning	Yes	No	No
Multiple simultaneous predictions	Yes	No	No
Unsupervised learning	Yes	Yes	No
Robustness and fault tolerance	Very high No		Yes
Detailed mapping to neuroscience	Yes	No	No
Probabilistic model	No	Yes	No

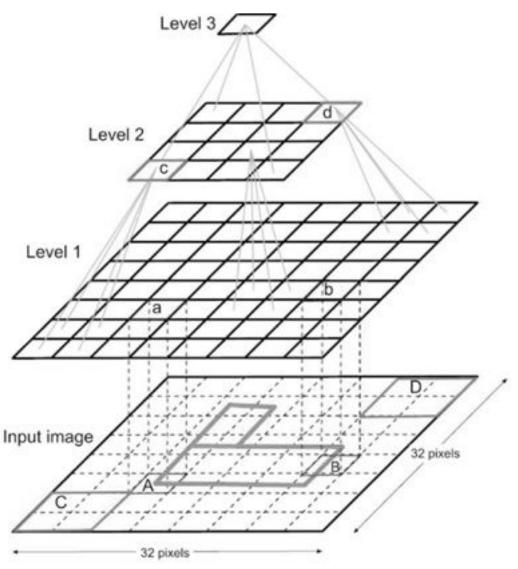
HTM理論の歴史

- ・ゼータ1アルゴリズム
 - Hawkins-George: 2005
 - 数学的
- Cortical Learning Algorithm
 - 皮質学習アルゴリズム
 - より神経科学的
 - Hawkins-Ahmad: 2010
 - オンライン学習
 - Sparse Distributed Representation (SDR表現)
 - Localist 表現 (Point neuron)
 - IBMが参入
- Gen 3 Algorithm: 2014-2016

	Zeta1 2005	CLA 2009	Gen3 2014	Gen4 ??
Common cortical algorithm	X			0
Hierarchy & invariance	0	X	0	0
Sequence & prediction	?	0	0	0
Continuous learning	X	0	0	0
Feedback	х,о	X	0	0
Behavior	X	X	?	0
Attention	x	X	x	0
Laminar structure	x, ?			0
Sparse distributed representation		0	0	0

Lecture by S. Ahmad, slightly modified by Matsuda

Zeta 1 Algorithm 1



Numenta

Fig. 4. The HTM model with three layers of nodes.4

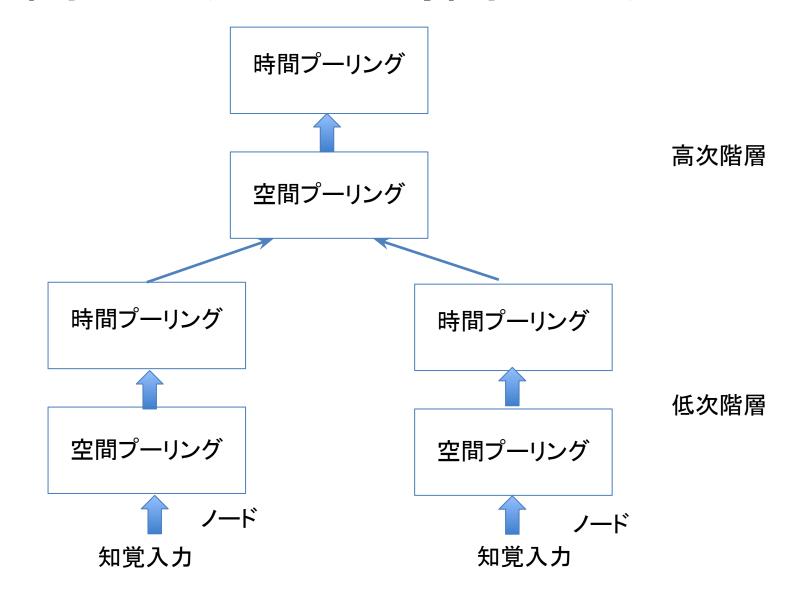
ゼータ1アルゴリズムの特徴

- 教師なし学習
- ・ 木構造の階層構造
- ・ 上の階層ほど空間的に広く、時間的に長い
- 上の階層ほど時間変化が少ない
- バッチ学習
- 学習フェーズと
- 推論フェーズに分かれる
- 錯視現象を再現
- Vicariousで発展
 - Recursive Cortical Network理論
 - CAPTCHAを破る

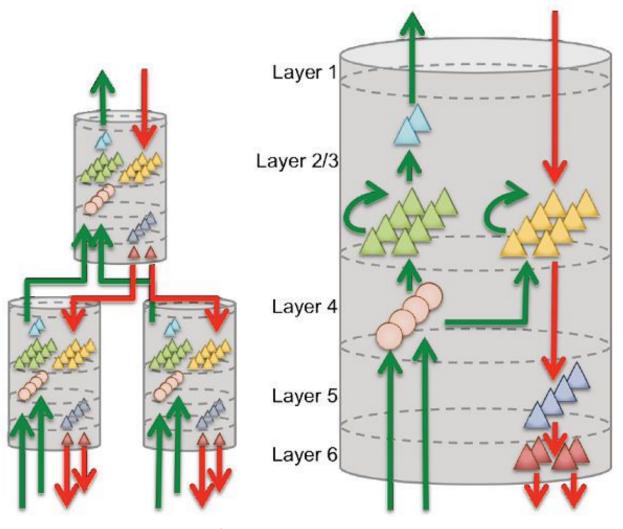
学習フェーズ

- Space Pooling
 - 一代表的なパターン(coincidence, quantization centers)を集める
- Time Pooling
 - 1次のマルコフ過程(時間遷移行列)
 - 時間的に近接したグループを集める
 - ・0次のマルコフ過程
- ・階層ごとに学習する

空間プーリングと時間プーリング



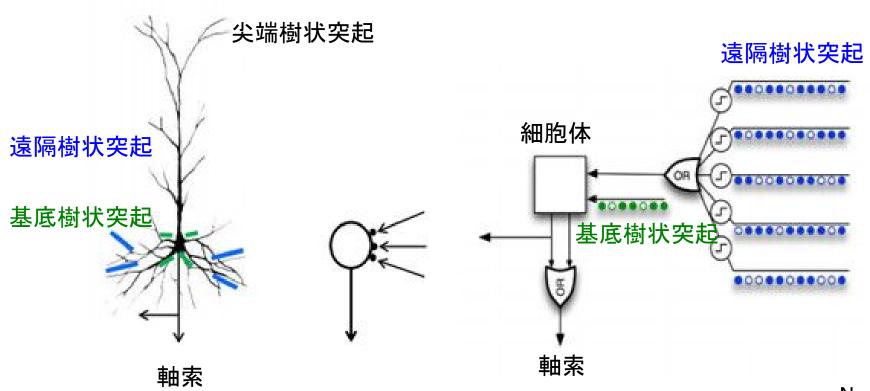
HTM/Zeta1と新皮質の6層構造



Dileep George

Cortical Learning Algorithm

Appendix A: A Comparison between Biological Neurons and HTM Cells



Numenta

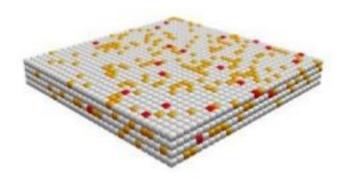
HTM/CLAのニューロン

- 細胞体
 - 計算
- 基底樹状突起
 - 下の階層からのパターンを受け取る
 - 空間的静的パターンの認識: Space Pooling
- 遠隔樹状突起
 - 階層内の他のニューロンとシナプス結合
 - 時間シーケンスの認識: Time Pooling
- 尖端樹状突起
 - フィードバック情報
- 軸索
 - 情報の出力

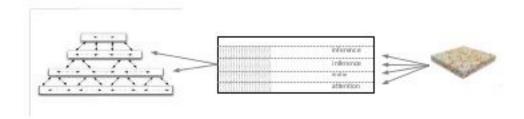
HTM Temporal Memory (aka Cellular Layer)

Converts input to sparse activation of columns Recognizes, and recalls high-order sequences

- Continuous learning
- High capacity
- Local learning rules
- Fault tolerant
- No sensitive parameters
- Semantic generalization



HTM Temporal Memory is a building block of neocortex/machine intelligence



HTM Temporal Memory 1) Cortical Anatomy Not Just Another ANN Mini-columns Inhibitory cells Cell connectivity patterns 2) Sparse Distributed Representations 3) Realistic Neurons Active dendrites Thousands of synapses Learn via synapse formation numenta.com/learn/

HTM/CLAのアルゴリズム Space Pooling

- 基底樹状突起のシナプス結合で、下の階層 の静的パターンを発見
- 予想状態のセルがあればそれが発火
 - なければコラムのセルが全部発火(Surprise)
- そのとき複数のセルが発火
 - Sparse Distributed Distribution (SDR)
- ・発火したシナプスの永続値を増加(学習)

HTM/CLAのアルゴリズム2 Time Pooling

- 発火しているセル以外のセルで、遠隔樹状突 起のシナプスで十分につながっているものを 予想状態にする
 - 記憶した時間シーケンスにより発火
 - 記憶になければSurprise
- 予想に成功したシナプスの永続値を増加
 - 時間シーケンスの学習

要するにHTMニューロンは

- ・次の情報を加算して発火確率を決める
 - 基底樹状突起のシナプス経由での下の階層のパ ターン入力
 - 遠隔樹状突起のシナプス経由での階層内の時間 シーケンスパターン入力
 - 尖端樹状突起のシナプス経由での上の階層から の予想入力
- F. Byrne OpaHTM

Sparse Distributed Representation SDR

- 一つのパターンを多数のニューロン(コラム)のうちの複数のニューロン(コラム)で表現する
 - 一つで表現する場合を
 - Point Neuron、Localist表現
- ・ SDRの優位性
 - 表現が豊富
 - 頑強
 - ・多少のニューロンが死んでも問題無い
 - 実際の脳ではSDRが採用されている

SDRの幾何学的表現

SDRのハリネズミモデル

樹状突起はベクトル

- ・ 基底樹状突起はベクトル
- 下の階層(FF)の高次元空間 の部分空間の短いベクトル
 - ハリネズミモデル
- FF 空間の長いベクトルを多数の短いベクトルの和として表現する
- ・遠隔樹状突起はHTM空間 の短いベクトル
- ・ 脳の集団符号化方式

脳とコンピュータの比較

- ・コンピュータ=CPU+メモリ
 - 計算するもの
- 大脳にCPUはない、すべてメモリ
 - 脳は計算しない
 - 記憶を想起する
- 100ステップ則(Kurzweil)
 - -0.5s/5ms=100
 - 脳は100ステップで仕事をこなす

脳は世界のモデル作成機

- ボールをキャッチする動作(Kurzweil)
- ・ コンピュータ (ロボット)
 - ボールの位置と速度の測定
 - ボールの軌道の計算と将来位置予測
 - ロボットの腕の複雑な動作の計算
 - 何万ステップ
- 脳
 - ボールの軌道を学習で覚える (Learning)
 - 手の運動を学習で覚える
 - シークエンスを想起する (Inference)
 - 100ステップ(アセンブラ?)
 - 深層(!!)学習では有り得ない

脳内モデルについての見方

- 脳は力学系のモデラー(F. Byrne)
 - 外界の力学系のモデルを脳内に作る
 - 力学系の観測が脳内モデルを想起
 - Takensの定理: モデル間の情報は少なくて良い
- H. Markramのバブル世界
 - 人は現実よりは脳内モデルを見ている
 - バブル世界
 - 錯覚の起源?

脳はベクトルの変換機

- ・脳に入力されるのはベクトルの時間系列
- ・ 別のベクトル系列に変換される(圧縮)
- 脳の領野の階層を上がると
 - より空間的に広い
 - より時間的に長い
 - より時間的に安定した不変表現に変換される
- ・ 階層を降りて筋肉を動かすコマンド(ベクトル)になる
- ・ 脳はベクトルをベクトルに変換する関数(機械)
 - チューリングテスト
 - 中国語の部屋

脳の動作はなぜ速い?

- ・脳には多数(3億?)のパターンの時間系列が 記憶されている
 - 学習、経験、練習によって
- それらは階層的になっている
- 外部入力により適切な解が想起される
- それが筋肉を動かす
- ・いかに高速に想起するか?
 - 量子計算的(G.R. Rinkus, P.A. van der Helm)

汎用人工知能をめぐる The Great Game

汎用人工知能の実現法 Jeff Hawkinsの分類

- 生物学的方法
 - 脳を模倣する
 - 有望
- 数学的方法
 - 人工ニューラルネット、深層学習
 - 多分ダメ
- · 工学的方法(GOFAI)
 - ダメ
 - しかし、例えばBen Goertzel

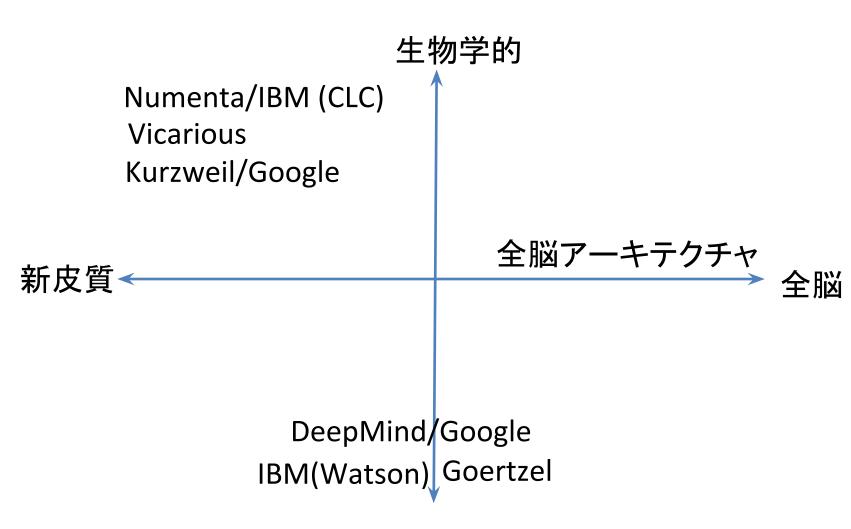
汎用人工知能の粒度による分類

- 粗粒度(抽象的)
 - GOFAI、Watson?
- 中粒度
 - HTM/Zeta1, BESOM, HMM
- 細粒度(Neural Net)
 - 深層学習
 - HTM/CLA
 - スパイキング・ニューロン
- ・ 超細粒度(脳のシミュレーション)
 - HBP

汎用人工知能達成の方法

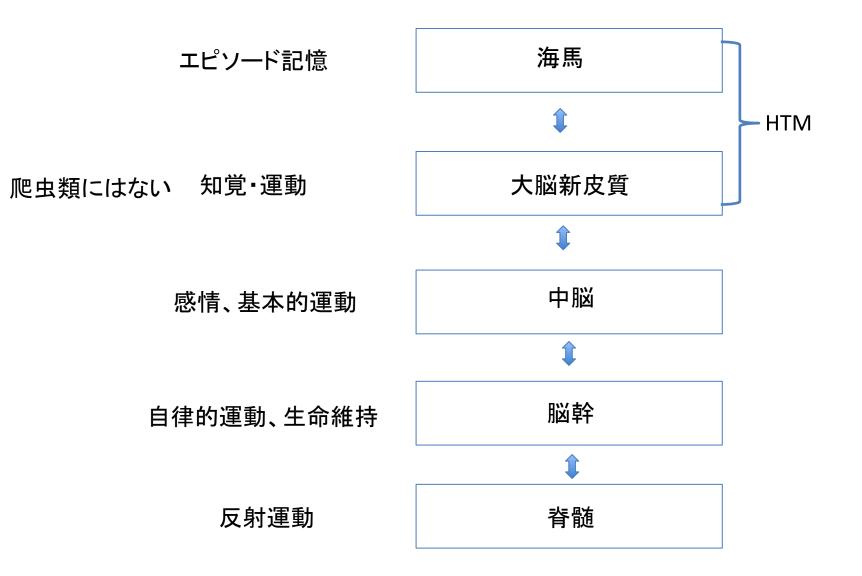
- ・ボトムアップ: 生物学的方法
 - HTM/CLA, HBP
- ・トップダウン:機能的方法
 - その他

山川(的)分類



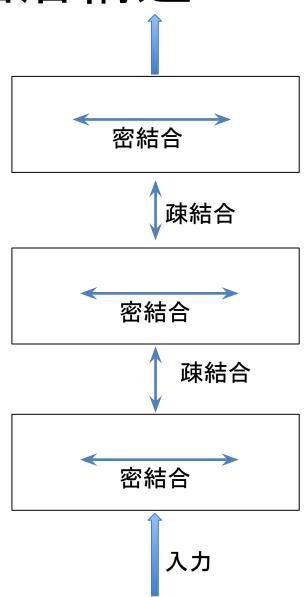
工学的

脳の階層構造



新皮質の階層構造

- ・ 脳は複雑階層系
 - 領野内は密結合
 - 領野間は疎結合
- 深層学習(CNN)
 - 階層間は密結合
 - 階層内は結合なし
- HTM理論
 - 階層内は密結合
 - 階層間は疎結合



脳型計算機による 天気予報

- ・コンピュータ
 - 偏微分方程式を解く
- 脳型コンピュータ
 - 過去の天気図をすべて覚える
 - 今日の天気図が与えられる
 - 過去のもっとも近い天気図を探す
 - 次の日の天気図を見る

汎用人工知能をめぐる大競争 The Great Game

- DeepMind/Google
 - D. Hassabis, 40カ国から200人
- Vicarious
 - D. George, 30人(1100人の中から)
- IBM Cortical Learning Center (皮質学習センター)
 - W. Wilcke, 100人
- 全脳アーキテクチャ
- OpenCog., GoodAl, nnaisense, IBM (Synapse)