コネクトーム情報学
差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
コネクトーム情報学 [2018/02/09 17:50] – connectome | コネクトーム情報学 [2018/02/10 10:05] (現在) – ymkw | ||
---|---|---|---|
行 1: | 行 1: | ||
===== コネクトーム情報学 ==== | ===== コネクトーム情報学 ==== | ||
- | 「コネクトーム」とは神経系のネットワーク地図のことで、ニューロンやニューロン群、領野などがどのように繋がり合っているのかを示しています。脳神経生物学的な実験結果が格納されているデータベースやシミュレーションを活用してコネクトームに関わる形態的・機能的情報を抽出することを、我々は「コネクトーム情報学(Connectome Informatics)」と呼んでいます。本テーマは、「全脳アーキテクチャ中心仮説」をコネクトームレベルで検証する上での重要な位置づけとなっています。 | + | 「コネクトーム」とは神経系のネットワーク地図のことで、ニューロンやニューロン群、領野などがどのように繋がり合っているのかを示しています。脳神経生物学的な実験結果が格納されているデータベースやシミュレーションを活用してコネクトームに関わる形態的・機能的情報を抽出することを、我々は「コネクトーム情報学(Connectome Informatics)」と呼んでいます。本テーマは、「[[全脳アーキテクチャ中心仮説|全脳アーキテクチャ中心仮説]]」をコネクトームレベルで検証する上での重要な位置づけとなっています。 |
- | + | ||
- | 【全脳アーキテクチャ中心仮説】 | + | |
- | ”脳はそれぞれよく定義された機能を持つ機械学習器が一定のやり方で組み合わされることで機能を実現しており、それを真似て人工的に構成された機械学習器を組み合わせることで人間並みかそれ以上の能力を持つ汎用の知能機械を構築可能である” | + | |
私たちは、脳全体に学んだアーキテクチャによる汎用人工知能(AGI)の実現を目指して研究活動を行っています。 これまで脳の様々な領野に相当するモデルが研究されてきましたが、これらの各モデルをどのように結び付けるかが必要になってきています。そのため神経回路の地図であるコネクトームによりモデルの結合を実現するために研究を行っており、様々な神経科学知見に対してメソスケールのコネクトームレベルで整合性を持つ「全脳コネクトーム・アーキテクチャー(WBCA)」を構築・整備しています。AGIを複数の機械学習モジュールの結合には多くの組合せが考えられますが、脳を参考にすることでモジュールの組合せに制約を課し、効率的な開発ができると考えています。この脳を参考にした制約は、「全脳コネクトーム・アーキテクチャ」によって明確にされるものです。 | 私たちは、脳全体に学んだアーキテクチャによる汎用人工知能(AGI)の実現を目指して研究活動を行っています。 これまで脳の様々な領野に相当するモデルが研究されてきましたが、これらの各モデルをどのように結び付けるかが必要になってきています。そのため神経回路の地図であるコネクトームによりモデルの結合を実現するために研究を行っており、様々な神経科学知見に対してメソスケールのコネクトームレベルで整合性を持つ「全脳コネクトーム・アーキテクチャー(WBCA)」を構築・整備しています。AGIを複数の機械学習モジュールの結合には多くの組合せが考えられますが、脳を参考にすることでモジュールの組合せに制約を課し、効率的な開発ができると考えています。この脳を参考にした制約は、「全脳コネクトーム・アーキテクチャ」によって明確にされるものです。 | ||
行 18: | 行 15: | ||
連絡先: | 連絡先: | ||
- | 山川宏(ドワンゴ) | + | 山川宏(ドワンゴ) |
コネクトーム情報学.1518166216.txt.gz · 最終更新: 2018/02/09 17:50 by connectome