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Abstract 
We have been developing BriCA (Brain-inspired Computing Architecture), the generic software 

platform that can combine an arbitrary number of machine learning modules to construct higher 
structures such as cognitive architectures inspired by the brain. We discuss requirements analysis and 
design principles of this cognitive computing platform, report its implementation, and describe plans 
for further development. 
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1 Introduction 
Inspired by the recent advance in neuroscience and machine learning (ML), we propose a 

hypothesis on reproducing the whole brain level functionality out of ML modules, to be tested with the 
software platform introduced below.  

1.1 Background 
There are trends in ML research such as the following: 1) ML research has been inspired by recent 

development of the cognitive neuroscience and often referring to neuro-scientific features of the brain.  
2) Learning algorithms of heterogeneous paradigms have been combined to realize performance or 
functionality that could not be attained with a single paradigm (Vinyals et al. [1], Karpathy and Fei-fei 
[2], Minh et al. [3], and Gao et al. [4]).  3) The breakthrough in acquiring distributed representations 
with deep learning (Le et al. [5]) may have resolved the basic issues in AI such as the frame problem, 
the symbol grounding problem and knowledge acquisition bottleneck. 

1.2 The Hypothesis 
The following is the hypothesis on which the current article is based: 

The brain combines modules, each of which can be modeled with a machine learning algorithm, 
to attain its functionalities, so that combining machine learning modules in the way the brain does 
enables us to construct a generally intelligent machine with human-level or super-human cognitive 
capabilities. 

The hypothesis involves the three following sub-hypotheses: 
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1)	
  Modularity	
  of	
  the	
  Brain	
  

We shall assume the hypothesis that the brain is constituted of computationally independent 
modules (the modularity hypothesis).  The brain apparently is constituted of anatomically independent 
modules in various levels, such as organs like neo-cortices, hippocampi, and basal ganglia, cortical 
areas like the primary visual cortex and the primary motor cortex, and sub-organ loci like CA1 and 
CA3 in the hippocampus. 

2)	
  Brain	
  Organs	
  and	
  Machine	
  Learning	
  

For the hypothesis above to hold, the brain modules must be modeled in a functionally 
encapsulated manner.  In other words, they must be modeled in the functional level (or Marr’s 
computational level).  Here, we assume that the learning functionality of brain modules can be 
modeled with the functionalities of (known or to-be-invented) ML algorithms (the machine learning 
hypothesis). 

3)	
  Emergent	
  Cognitive	
  Functions	
  

It is not evident that combining ML modules yields the whole brain cognitive functionality (the 
emergence hypothesis).  The system should be carefully designed to attain desired functional 
emergence and put to the test.  Meanwhile, we could follow suit with the effort in the ML discipline to 
combining algorithms as mentioned above. 

2 Platform Requirement 
Our aim here is to test the hypothesis above and to realize highly capable cognitive systems, 

hopefully at the human level.  As the attainment of knowledge and techniques in neuroscience, 
machine learning, and cognitive architecture would require decades to come, the effort should be 
better done on a long-lasting platform.  While a research organization could also be an important 
platform, the current paper focuses on the software platform for testing the hypothesis.  The platform 
is called BriCA (Brain-inspired Computing Architecture) and is intended to support the build-and-test 
approach in an efficient way. 

2.1 The Necessity of a Software Platform 
To test the hypothesis above, models must be implemented (for the build-and-test approach).  This 

requires an implementation mechanism that simultaneously runs heterogeneous ML modules and 
arbitrates them in an efficient manner. 

The construction of the entire cognitive architecture also requires various processes such as brain 
architecture modeling, cognitive architecture design, research and development of ML algorithms, 
cognitive architecture fostering (by making them learn in a certain environment), and application to 
products.  These processes would involve collaboration of numerous participants in the community 
and certainly be helped with a software platform that integrates them. 

2.2 Desirable Features 
BriCA as the platform is required to fulfill the following conditions: 

1. Modules can be used as ‘libraries’ so that new or ready-made implementations of ML algorithms 
can be used as plug-ins. 

2. Module-submodule hierarchy should be supported to mimic the hierarchy of organs in the brain. 
3. Arbitrary modules in the platform can be connected via a unified method of communication. 
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4. The cognitive architecture can interact with the environment via a sensor-actuator interface, and 
work with other platforms such as the Robot OS or game engines. 

5. The platform has a scheduler that arbitrates asynchronous calls among its modules.  When the 
environment is real, the scheduler must work in real-time. 

6. The platform is scalable with regard to the number of modules and processing speed. 
7. The platform has a mechanism for supporting learning curricula in order to deal with the problem 

of combined learning (discussed later). 
8. The platform is capable of distributed development. 
9. The platform provides with user interfaces for managing experimental setting (and internal states 

of modules, if possible). 
10. The platform should not be proprietary. 

Some of the requirements are met with robotics middleware such as ROS (ros.org) and MIRA*, 
data analysis platforms such as Weka†, Garuda‡, Jubatus (jubat.us), and Neural Network Toolbox™§, 
and modular simulation environments such as Simulink** and E-Cell (Takahashi et al. [6]).  Neural 
simulators such as Nengo (Eliasmith [7]) and emergent (Aisa et al. [8]) are also relevant.  However, 
robotics middleware such as ROS and MIRA does not support hierarchical design, neural simulators 
are committed to the algorithmic levels, which we do not want, Neural Network Toolbox™ is 
proprietary, and other platforms do not support the multi-ML module communication requirement.  
Thus, we could not find a platform that satisfies all of our requirements above and set out to design a 
platform of our own. 

3 Design and Implementation 

3.1 The BriCA Core 
The core of the platform implements a CognitiveArchitecture, consisting of a Scheduler and 

Module instances and Connection instances.  A Module is an abstracted ML module with input and 
output ports, the update interval, and internal states.  An output port can be connected to an input port 
via a Connection instance.  Time elapses as the Scheduler calls Module instances according to the 
update interval.  A port value is a numerical vector of an arbitrary length (a signed 16 bit integer in the 
current implementation). 

Each module has the following method: 
out, states <- fire(in, states) 

Namely, a Module instance updates the values of output ports and the internal states solely 
dependent on the values of input ports and the current internal states by calling the user-defined 
fire()method.  The operation is carried out in three phases: 

1. input: updates input ports according to the values of the connected output ports 
2. fire: result, states <- fire(in, states) 
3. output: out <-result 

The fire phase keeps the result in the result buffer so that the I/O buffers are modified only in the 
two critical I/O phases.  This is to make the system scalable by assuring parallel firing of modules.  

                                                             
*
	
 http://www.mira-project.org/joomla-mira/ 

†
	
 http://www.cs.waikato.ac.nz/ml/weka/ 

‡
	
 http://www.garuda-alliance.org/ 

§ http://www.mathworks.com/products/neural-network/ 
** http://jp.mathworks.com/products/simulink/ 
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The firing of Module instances is discrete and the values of output ports are defined as piecewise 
constant (Zeigler et al. [8]).  The firing scheduling is done by the discrete event scheduler that supports 
real-time and virtual time scheduling (Takahashi et al. [6]).  Inter-module communication employs 
message passing (as opposed to shared memory) for the sake of scalability. 

3.2 Module Reusability and the BriCA Language 
As we expect collaborators to work together for improving module implementations while keeping 

other parts of the 
architecture intact, we have 
designed a domain specific 
language for collaborative 
architecture design and for 
circulating and archiving 
designed architectures.   The 
language is to define the 
specification of modules, 
ports and connections and 
thus implementation 
independent.  The language 
supports hierarchical 
(nesting) definition of 
modules.  It uses object 
description languages such 
as JSON or Turtle for its 
syntactic representation.   

   

4 Results 
We have implemented Version 0 of the platform for proof-of-concept in Java and used it to 

implement a cognitive architecture called CITTA (Yamakawa et al. [10]).  The current Version 1 is 
being implemented in Python.  The core libraries for BriCA Version 1 are available for free use under 
the terms of the Apache License.  The source code is accessible from the GitHub repository††, and API 
documentation along with a basic tutorial is hosted at a GitHub Pages site‡‡. Some examples scripts 
are provided inside the python/examples directory within the V1 repository.  Samples include code for 
utilizing classifiers from scikit-learn, a wrapper for a simple autoencoder implemented with Chainer, 
and an implementation of the NeuralTalk architecture with pre-trained weights. An interface for ROS 
integration is prepared as the brica1.ros module, which provides an adapter class	
 that acts as a ROS 
node and can be connected to a BriCA agent via BriCA port interface.  The BriCA language is also 
being implemented.  Version 2 will provide multi-language support (combining modules written in 
heterogeneous computer languages), interfaces to other middleware that provide simulated and real 
environment, and more advanced real-time scheduling and scalability to run on multiple computer 
nodes.

                                                             
†† https://github.com/wbap/V1/ 
‡‡ https://wbap.github.io/V1/ 



 

5 Discussions 

5.1 Distributed Representation 
On BriCA, modules exchange information in the numerical vector format (distributed 

representation), as do most of computational neural network and ML models.  On the other hand, 
cognitive architectures often use symbolic graph representation such as trees and stacks (as was the 
case with CITTA implemented for Version 0).  Thus, general ‘design patterns,’ such as decomposition 
by graph traversal, would be required to handle graphs with distributed representation.  The 
computational neuroscientific modeling of cognitive processes that have been considered to require 
graph structure would also certainly help in this regard  (Eliasmith [7]). 

5.2 The Problem of Combined Learning and Curricula 
In a system consisting of multiple ML modules, the varying I/O function of a module may wield 

influence on the function of another module (Sculley et al. [11]).  For example, motion learning in the 
motor cortex would wield influence on the motion learning in the cerebellum.  As learning is fixed 
from the lower layer in the development of visual cortices, curricula seem important for learning.  
Thus, it is desirable for the platform to support mechanisms for users to test, generalize, implement 
and share various curricula. 

5.3 Fostering and Application 
As the platform will be applied to various fields and environments such as robotics, games, and 

data analysis, it would be better combined with other platforms.  As a practical cognitive architecture 
must learn in an environment, it is important to design the ‘fostering’ environment.  In robotics, 
middleware such as ROS, as well as virtual robotic simulators such as Gazebo, is widely used.  Game 
engines and data analysis platforms could work together with BriCA in the future. 

5.4 Populating the Library 
The utility of BriCA largely depends on the richness of its ML modules, which could profit from 

existing implementation.  Open source generic ML libraries such as Scikit-learn (scikit-learn.org), 
Theano§§, PyBrain (pybrain.org), PyLearn2***, and Weka are available to be embedded in modules.  
Implementation for more specific functions includes SLAM implementation such as RatSLAM 
(Milford et al. [12]), neocortex models such as BESOM (Ichisugi and Takahashi [13]), DeSTIN (Arel 
et al. [14]) and HTM (George and Hawkins [15]), and cerebellar models such as MOSAIC (Haruno et 
al. [16]).  Besides making these implementations available for BriCA, it would be also important to 
encourage the users to implement, evaluate, and share new ML methods. 

5.5 Performance Issue 
The rate of inter-neuron information processing would be slower than the maximum firing rate of 

about 1kHz.  Thus, communication delays between BriCA modules would be required to be negligibly 
small with regard to 1ms regardless of the number of modules.  If the negligible overhead is 1%, it 

                                                             
§§ http://deeplearning.net/software/theano/ 
***  http://deeplearning.net/software/pylearn2/ 
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amounts to 10 µs (10-5s).  In Version 0, the intra-process data exchange is done synchronically and 
simplex delay is about 100 ns. 

The computational power of the human brain is said to be about 1 PFLOPS.  If the state-of-the-art 
processors have the computation speed of about 10 GFLOPS (with a moderate estimation), it means 
that about a hundred thousand cores are required.  Then, as it is rather difficult for off-the-shelf 
hardware to guarantee the delay to be less than 10µs for arbitrary inter-thread communication with 
payload, we should also watch advances in hardware such as neurochips, as well as in software 
technology. 

6  Conclusion 
In this article, we reported the attempt of developing a software platform (BriCA) while posing a 

hypothesis for realizing brain-inspired cognitive machines.  To prove the hypothesis, we have to 
construct exemplar realizations of emergent cognitive functionality by combining more than one ML 
modules.  This task is currently being done with Version 1 and put to the test on hackathons.  We are 
also intending to foster a community of researchers and developers of cognitive architectures in line 
with the hypothesis mentioned above. 
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