282

# 脳機能の全容は巨大クロスワードの如く急速に解明されるかもしれない

The great crossword: Potential for rapid progress in understanding the function of the entire brain

田和辻 可昌<sup>1,2</sup>, 布川 絢子<sup>2</sup>, 荒川 直哉<sup>2</sup>, 高橋 恒一<sup>3,2,4</sup>, 山川 宏<sup>5,2,6</sup> Yoshimasa Tawatsuji <sup>1,2</sup>, Ayako Fukawa <sup>2</sup>, Naoya Arakawa <sup>2</sup>, Koichi Takahashi <sup>3,2,4</sup>, Hiroshi Yamakawa <sup>5,2,6</sup>



1. 早稲田大学, 2. 全脳アーキテクチャ・イニシアティブ, 3. 理化学研究所, 4. 慶應義塾大学, 5. 東京大学, 6. 電気通信大学

1. Waseda University, 2. WBAI, 3. RIKEN, 4. Keio University, 5. The University of Tokyo, 6. The University of Electro-Communication

## Introduction

- Previous studies focus on particular regions of the brain to understand its functions
- However, the functional decomposition approach [Yamakawa, 21] is also important in that function of a brain region should be allocated from the entire brain function

### SCID (Structure-Constrained Interface Decomposition) method [Yamakawa 21]

- Method for extracting the operating principles necessary to reproduce the cognitivebehavioral functions of the brain based on the reference architecture of the brain
- 1. Anatomical structures around the brain region of interest (ROI) are investigated and registered as Brain Information Flow (BIF)
- 2. A valid ROI and the top-level function (TLF) it performs are determined
- 3. Possible HCDs (Hypothetical Component Diagrams) are listed and HCDs that are inconsistent with scientific findings are dismissed



### Summary

- The functional decomposition approach [Yamakawa, 21] is important in that function of a brain region should be allocated from the entire brain function
- In this approach, as the function allocation proceeds,
  - The constraints on possible function allocation pattern become stronger
  - The allocation problem becomes easier to be solved just like a crossword puzzle

The problem dealt in this method is quite similar with a crossword puzzle in the perspective of structure-constrained contents-allocating problem!

### Correspondence between Crossword Puzzle Solving and Designing Reference Architecture of the Brain

|                               | Crossword puzzle                 | Reference Architecture of the Brain    |
|-------------------------------|----------------------------------|----------------------------------------|
| Structure                     | Puzzle framework                 | (Mesoscopic) Neural Structure          |
|                               | Squares and blanks               | Brain regions and connections          |
| Contents                      | Letters allocated to each square | Subfunctions                           |
|                               |                                  | (provided by functional decomposition) |
|                               | Words                            | (Top level) Functions                  |
| Clue for which contents to be | Clues                            | Neural behavior                        |
| allocated                     | ("across" and "down")            | ("What information each region codes") |

# In the latter part of problem solving, allocating should rapidly progress

- Allocatable contents for one structure get restricted as the contents are allocated to the peripheral structure
- At the point of the allocating progress, the allocatable contents drastically decreases





### Discussion

ROI and TLF is set from the HCDs creator's own perspective. It causes the problem of integration of HCDs created separately. In this point, we would like to discuss:

- 1. How should we determine ROI and its TLF?
- 2. Is it possible to integrate HCD created in a distributed manner (see also: *Functional composition problem*)?

# NEURO2022 Disclosure of Conflict of Interest Name of first author: Yoshimasa Tawatsuji

I have no COI with regard to the presentation.

#### References:

Yamakawa, H.: The whole brain architecture approach: Accelerating the development of artificial general intelligence by referring to the brain, *Neural Network*, 144, 478–495 (2021)

## Functional composition problem

**n** E.g. Eye movements

- (Sub)functions of brain regions are determined under the functional decomposition of TLF (e.g. horizontal saccade)
- However, it does not guarantee that the function of a region should be same if allocated by decomposition of the higher function (e.g. "eye movement", or "(visual) attention")

