

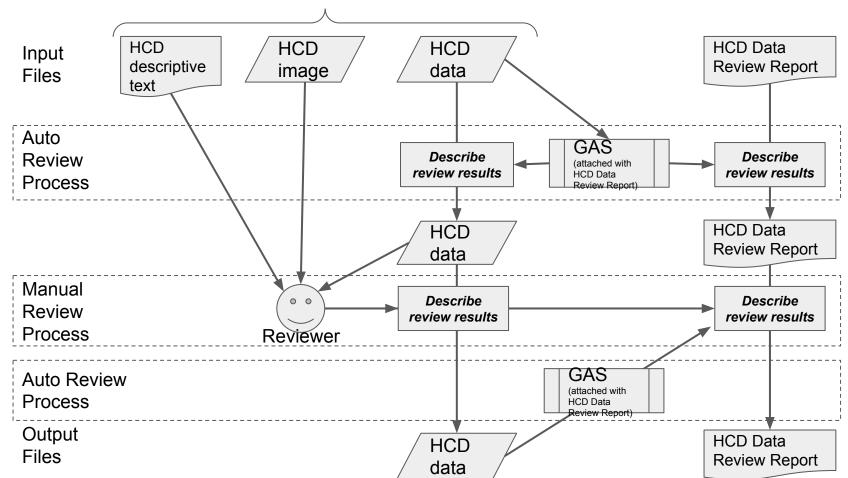
HCDデータの審査について

全脳アーキテクチャ・イニシアティブ 山川 宏

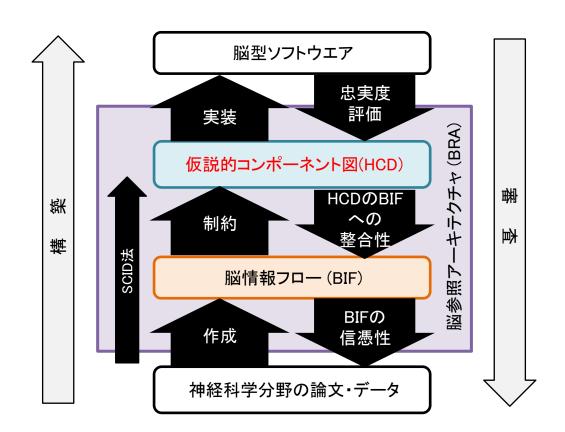
なぜBRAデータを審査する必要があるのか?

脳型ソフトウェアの仕様情報であるHCDを、次のような応用領域に用いるには、高い生物学的妥当性が望まれる。

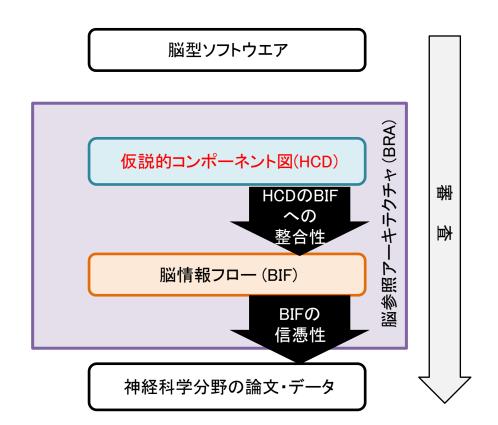
- Dysfunction再現による医療応用
- 対人インタラクションの設計
- ▼ マインド・アップロードの器
- ML技術の統合による脳型AGI開発

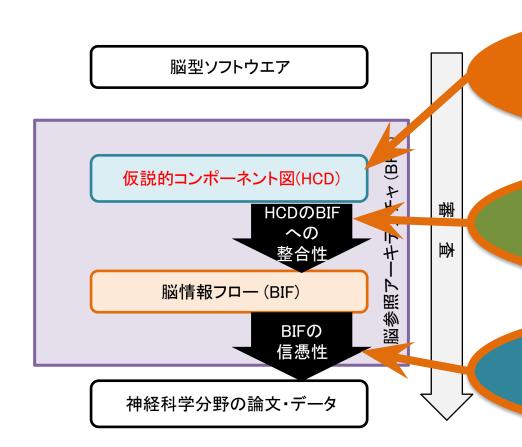

審査により一定程度以上の妥当性をもつHCDデータを 登録/公開する仕組みを構築中

審査対象となるHCD資料一覧(三点セット)


ファイル	概要
HCD descriptive text	TLFを解剖学的構造に対して矛盾なく、どのように分解したのか」をトップダウンに説明する。 ※フォーマットは、HCD Descriptive Text: Project ID (Template)
HCD image	ROIに含まれるCircuit/Uniform Circuitの解剖学的構造、およびROIに対する入力および出力をノードとリンクで表現した図。 ※ Draw.ioなどの作図ツール作成した画像ファイル
HCD data	ROIに含まれるCircuit/Uniform Circuit、Uniform Circuit間の Connection、Uniform Circuitに割り当てられた計算上の意味や計算 プロセスを記したファイル。 ※作成方法はHCD data preparation manual-jp に基づく

審査フロ一図


HCD作成者が準備する3点セット

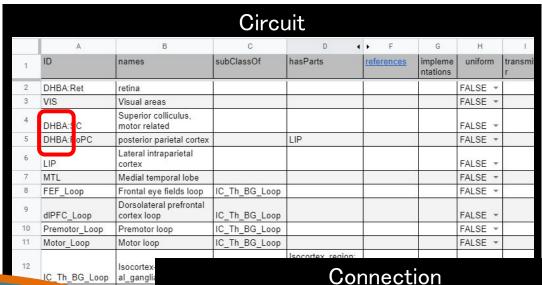

BRA駆動開発

BRAの審査

審査観点:BRAが満たすべき3つの性質

HCDの機能性

コンポーネントのプロセスの連鎖により 機能を発揮できる


HCDのBIFへの整合性

HDC内の全ての構造要素が、BIFの構造 に対応づいている

BIFの信憑性

記述された解剖学的構造等が文献や データで支持されている

適切度評価: BIFの信憑性(形式審査)

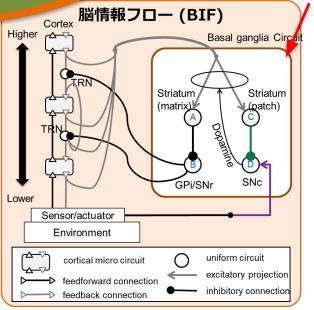
BIFの信憑性

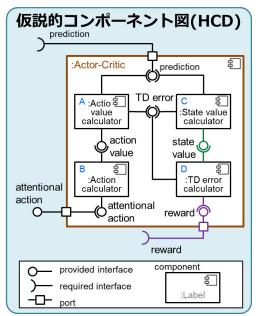
記述された解剖学的構造等が文献や データで支持されている

	Isocortex							
	Thalamus		А	В	C 4	▶ E	F	G
	gar	1	inputCircuit =	outputCircuit =	transmitter =	reference =	implementations	modType
	i i	2	DHBA:Ret	VIS		Hikosaka,2000		Excitatory *
		3	VIS	MTL		O'Reilly,2020		Excitatory *
	nuc (anglia)	4	VIS	LIP	1	Hikosaka,2000		Excitatory *
	thalamus	5	VIS	DHBA:PoPC		Hikosaka,2000		Excitatory *
9		6	DHBA:PoPC	MTL	1 1	O'Reilly,2020;	avitz,2011	Excitatory *
		7	LIP	FEF_Loop		Hikosaka,2000		Excitatory *
		8	FEF_Loop	LIP		Hikosaka,2000		Excitatory *
		9	FEF_Loop	dIPFC_Loop	, a	Hikosaka,2000		Excitatory *
		10	FEF_Loop	DHBA:SC	1	Hikosaka,2000		Excitatory *
		11	MTL	dIPFC_Loop		Passingham,2	12	Excitatory *
		12	dIPEC Loop	MTI		Passingham 2	12	Excitatory *

適切度評価: HCDのBIFへの整合性

HCDの構造要素がROI内の構造に対応づく


⊆ircuit: A,B,C,Dが夫々に対応


ction: 上記Circuit間の接続と向きが対応

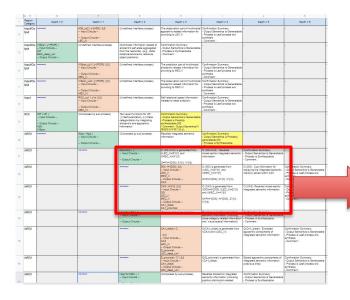
ROI

HDC内の全ての構造要素が、BIFの構造 に対応づいている

HCDのBIFへの整合性

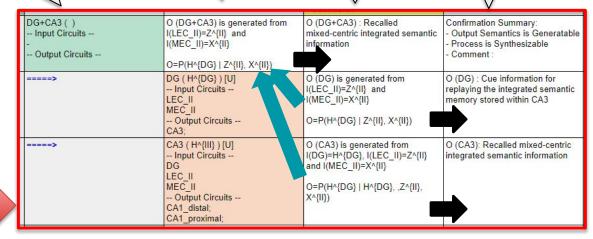
HCDの機能性評価

HCDの機能性

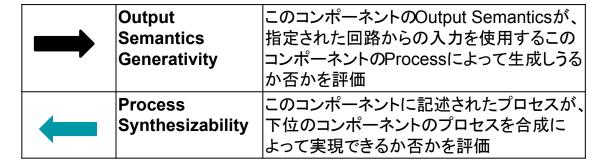

コンポーネントのプロセスの連鎖 により機能を発揮できる

HCDを構成する、コンポーネントが担うプロセスの連鎖によってROIが担う目的(TLF)を達成できることを、情報分野の専門家は判断する。

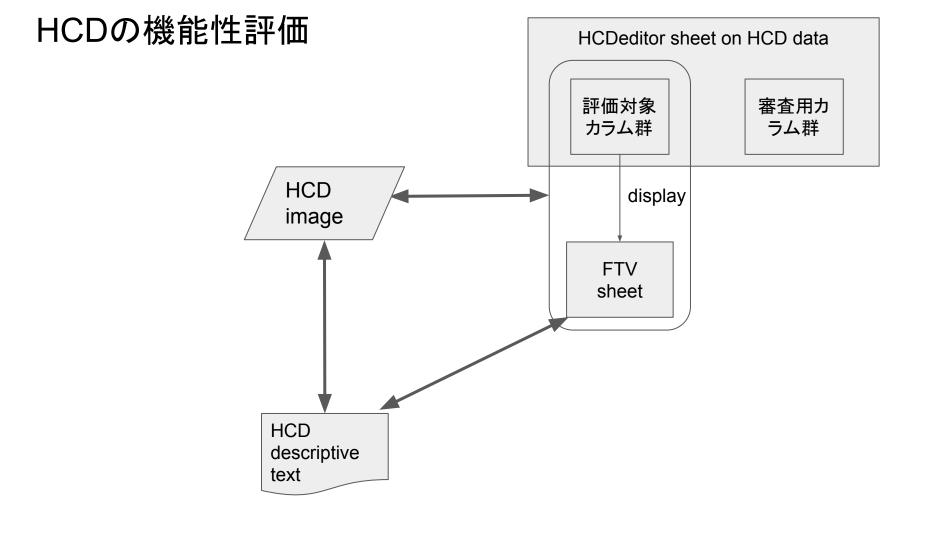
	D	E	F	G	Н	T.	J
1	Region Category	Depth = 0	Depth = 1	Depth = 2	Depth = 3	Depth = 4	Depth = 5
2	Input	US_input () [U] Input Circuits Output Circuits La_P; La_F1; La_F2;	(Undefined interface process)	Unconditioned stimulus	Confirmation Summary: - Output Semantics is - Process is - Comment :	-	-
а	Input	CS_input () [U] Input Circuits Output Circuits La_P:	(Undefined interface process)	Conditioned stimulus	Confirmation Summary: - Output Semantics is - Process is - Comment :	-	-
4	Input	CA1 () Input Circuits Output Circuits BA_E:	(Undefined interface process)	Context	Confirmation Summary: - Output Semantics is - Process is - Comment :	-	-
5	Output	CEm (CEm) Input Circuits BA_F Output Circuits	(Undefined interface process)	O(CEm) Fear response	Confirmation Summary: - Output Semantics is - Process is - Comment :	-	-
6	ROI	Extinction_Circuit (Extinction_Circuit) Input Circuits Output Circuits ?	[TLF] Adaptively control fear response facilitation information O(BA_F) based on I(US_Input), I(CS_input) and the context signal I(CA1)	O(BA_F): Fear Response Facilitation Information	Confirmation Summary: - Output Semantics is - Process is - Comment :	- 0	•
7	inROI	====>	La_F' (La_F') [U] Input Circuits CS_input US_input Output Circuits BA_F; BA_E: La_F1;	O(La_P) is generated when I(CS_input) matches I(CS_input) that was previously input at the same time as I(US_input).	O(La_P) :Information on detection of conditioned CS_input	Confirmation Summary: - Output Semantics is - Process is - Comment :	
卞	ンて	·ト	BA_F (BA_F) [U] Input Circuits La_P INĀvm Output Circuits CEm;	O(BA_F) is generated when I(La_P) is input in the absence of an I(INAvm) input	O(BA_F): Fear Response Facilitation Information	Confirmation Summary: - Output Semantics is - Process is - Comment :	
	て	-	LaBA (La) Input Circuits Output Circuits	O(LaBA) is generated by the result of a conditional branch with I(La_P), I(US_input), and I(CA1) as inputs. I(CS_input), I(US_input)	O(LaBA): Information for switching internal fear states	Confirmation Summary: - Output Semantics is - Process is - Comment :	
-	で	き	====>	La_F1 (La_F1) [U] Input Circuits US_input La_P Output Circuits BA_L; INAdm;	O(La_F1) is generated when both I(La_F) and I(US) were input.	O(La_F1): Information on simultaneous detection of conditioned CS_inptut and US_input	Confirmation Summary:
多	:15	I	>	La_F2 (La_F2) [U] Input Circuits US_input BA_E Output Circuits INAdm;	O(La_F2) is generated when both I(BA_E) and I(US) inputs are provided.	O(La_F2): Reinstatement Facilitation Information	Confirmation Summary: - Output Semantics is - Process is - Comment:
			22222>	BA_E (BA_E) [U] Input Circuits CA1 La_P BA_I Output Circuits INAvm, La_F2;	O(BA_E) is generated when context I(CA1) matches a previously received I(CA1) with I(I(La_P) in the absence of an input of I(BA_I).	O(BA_E): Low fear facilitation Information	Confirmation Summary: - Output Semantics is - Process is - Comment :
13	inROI	•	====>	BA_i (BA_i) [U] - Input Circuits La_F1 - Output Circuits BA_E:	O(BA_i) is generated when I(La_F2) is input	O(BA_i): Information on simultaneous detection of conditioned CS_inptut and US_input	Confirmation Summary: Output Semantics is - Process is - Comment :

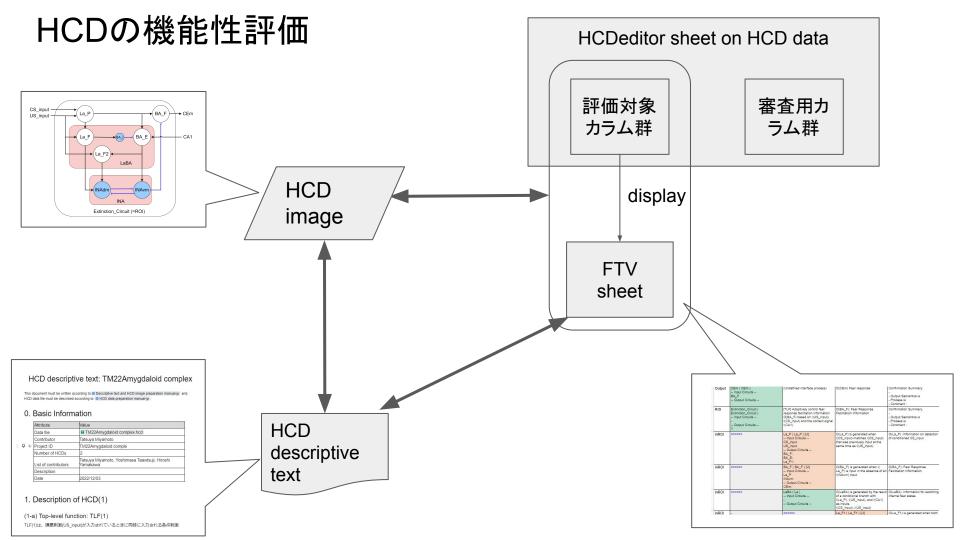

HCDの機能性評価

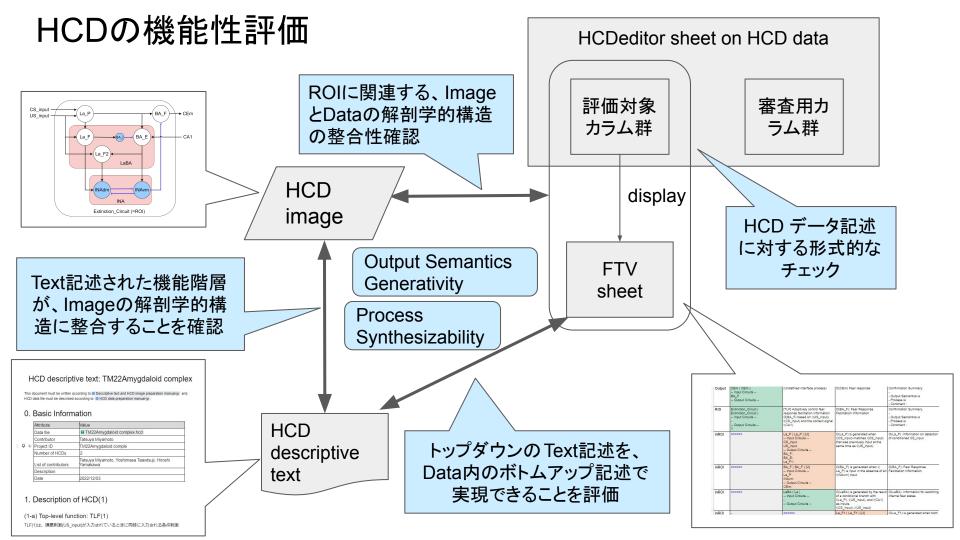
HCDデータ



Circuit ID、ラベル 入力、出力 プロセス (実装の対象) 出力の意 味


審査結果

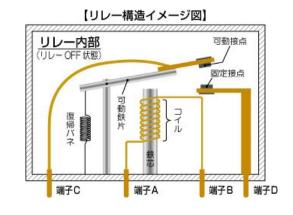



主な審査観点

機能のツリー表示

参考: Process Synthesizability で審査する観点

目的を達成する実行可能な仕組みがが構築できているか


<u>リレーON動作</u>

動作機序 実行可能 な方法の 論理

- ⁻⁻1.『電装品スイッチ』を入れます(=ONする)
- 2. 『端子A』~『端子B』間に電気(小電流)が流れます
- 3.『コイル』へ電気が流れます
- 4.『コイル』に磁場が発生します
- 5. 『鉄芯』に磁力が生じて磁石となります
- 6. 『鉄芯』が『可動鉄片』を引き寄せます
- 7.『可動接点』が『固定接点』と接触します
- 8.『端子C』~『端子D』間がつながります
- └9.『バッテリー(+)』から『電装品』へ電気が供給されます

<u>且的</u>

─ 10. 『電装品』が動作を開始します

参考: MITSUBASANKOWA, リレーの構造と動作原理, https://www.mskw.co.jp/support/car/relay

一般の人工物は、外界を参照した表現ではないためOutput Semanticsは議論できない。