Data for Brain Reference Architecture of YM24Amygdala Neural Architecture for Amygdala Fear Conditioning Yohei Maruyama, Tatsuya Miyamoto, Yoshimasa Tawatsuji, Hiroshi Yamakawa #### Objective and Outline #### Objective - To implement the functional expression of **amygdala fear conditioning** in the circuitry, we construct a Function Realization Graph (FRG). - In this data, we attempted to construct the FRG by using motifs. #### □Outline - The method used in this data paper differs from the SCID method. - We construct the FRG from the bottom up by **filling the BIF circuitry with motifs**. ### Background of the Data (1/2) #### □Amygdala fear conditioning. CS:harmless stimulus US: harmful stimulus After pairing the CS and US, the CS alone causes a fear response. (Joshua P._Johansen et al., 2011) # Background of the Data (2/2) #### □Amygdala fear conditioning circuitry. - The amygdala regions closely associated with fear conditioning include the lateral nucleus (La), the basal nucleus (BA), the central nucleus (CEN), and the intercalated cell masses (INA) within the BLA. - we focus on these regions to construct the BIF and FRG. (Adapted from Seungho Lee et al., 2013.) # -Data- BIF and FRG #### Overview of the Data and the Constructed BIF - For this BIF, we have modeled 8 neural nuclei to represent amygdala fear conditioning. - Modeled 14 connections between these neural nuclei. - The BIF is constructed based on these neural nuclei and their connections. #### Circuits(neural nuclei, 8) | | A. | 8 | 0 | D + | s 5 | T | U | V | W | Х | Y | Z | AA. | AB | AC | AD | AE | AF | AO. | |----|--------------|-----------------------|--|---------------------|-----------------------------|------------------|-----------|-------------------|---------------------------|--------|----------------------|-------------------------|------------|---------------------|--------------|----------------------|-------------|----------------|-------------------------------------| | 1 | Circuit ID 🔻 | Source of ID Ψ | Names Ψ | DHBA: graph_order | Sub-Circuits Ψ | Super Ψ
Class | Uniform V | Trans Y
mitter | Modul */
ation
Type | Size Ψ | Output Semantics (0) | Physiological Ψ
Deta | Comments Ψ | Contributor | Project ID | WBIF pull
request | WEIF copied | Review results | Auto Error Codes | | 2 | YM24Amygdala | (Maruyama, ~
2024) | ROI of YM24Amygdala | | La_Fear;BA;INAdm;IN
Avm; | | FALSE + | | | | | | | Tavvatsuji | TM24Amygdala | | | 0 | | | 3 | NCx_THM | makeshift - | Conditioned stimulus of fear
conditioning | 1760.1 | NCx;
THM: | | TRUE - | - | Excitat ~
ory | | | | | Miyamoto | TM24Amygdala | | | Warning: 1 | 1 Warning(s);
[109:Source of ID] | | 4 | MGm_PIN | [Asede, 2022] * | Unconditioned stimulus of fear
conditioning | 1760.1 | | | TRUE * | | Excitat ~
ory | | | | | Miyamoto | TM24Amygdala | | | 0 | J | | 5 | BA | [Duvaroi, 2014] ~ | Basal nucleus of Amygdala | | BA_Fear;BA_Ext; | | FALSE + | | - | | | | | Tatsuya
Miyamoto | TM24Amygdala | | | 0 | | | 0 | BA_Fear | makeshift - | Fear cell of BA | 1793.2 | | | TRUE - | - | Excitat ~
ory | | | | | Tatsuya
Miyamoto | TM24Amygdala | | | Warning: 1 | 1 Warning(s);
[109:Source of ID] | | 7 | BA_Ext | makeshift " | Extinction cell of BA | 1793.2 | | | TRUE - | | Excitat ~
ory | | | | | Tatsuya
Miyamoto | TM24Amygdala | | | Warning: 1 | 1 Warning(s);
[109:Source of ID] | | | INAdm | [Hagihara, ~
2021] | dorsal cluster of medial ITC | 1824.1 | | | TRUE + | GABA ~ | Inhibit ~
ory | | | | | Tatsuya
Miyamoto | TM24Amygdala | | | 0 | | | 1 | INGAven | (Hagihara, ~
2021) | ventral cluster of medial ITC | 1824.1 | | | TRUE - | GABA = | Inhibit ~
ory | | | | | Tatsuya
Miyamoto | TM24Amygdala | | | 0 | | | 10 | La_Fear | makeshift * | fear part of Lateral neucleus of
amygdala | 1794.1 | | | TRUE - | | * | | | | | Miyamoto | TM24Amygdala | | | Warning: 1 | 1 Warning(s);
[109:Source of ID] | | 11 | CA1_Context | makeshift ~ | CA1 resion for Context Information | 1619.1 | | | TRUE + | | * | | | | | Tatsuya
Miyamoto | TM24Amygdala | | | Warning: 1 | 1 Warning(s);
[109:Source of ID] | #### Overview of the Data and the Constructed BIF Connections (14) | ouit
(sCID) | D
relation | v Notation of
vCID in
Literature | Receiver
Circuit
(D (rCID) | D relation | Mintation
of rCIO in
Literature | * Size | Comments | Reference ID | Taxion | * Measurem s | Pointer
1 on
literatu
re | ers
on
figur
e | In-depth 's
Iteratur | Doc.
Link | Journal v
mames | Litterature type | Display w
strong par
join | Combined visiting for search | (Referen V | region
score | ver | SCOPE | | score : | d
soone | billy | Summ v S
prized v
CR C | CR S | Summ 'v'
orland
Revie
wed
CR | Contribut 1 | Project | |----------------|---------------|--|----------------------------------|------------|---------------------------------------|--------|---|----------------|---------|------------------|-----------------------------------|-------------------------|-------------------------|--------------|--------------------------------|-----------------------|--|------------------------------|--------------------|-----------------|-------|-------|-------|---------|------------|-------|------------------------------|-------|--|----------------------|---------------| | | | 3 | - Lu, Fear | | La | | | Pokanen, 2000 | Mouse | - Unsurveyed | | - 3 | | 20000 | Folia merpholo | Paries | La Fear
(03/03)
(Pricanan,
2000) | NOLTHALLS
ser | (Ftidner,
2000) | 1,000 | 0.750 | 0.000 | 0.000 | 0.5 | .8.1 | 9 021 | 0.007 | 0.027 | | Tatauya
Wyamoto | TMOKA | | PA V | • | 3 | - La_Fear | 1 | u | | | Lma, 2000 | - Mouse | - Aconal trace - | | | | 200 | Expennence I | Eigermental results | La_Fear
(32/32) (Linka,
2000) | MSm_PNLa_F
ear | (Links
2500) | 1 000 | 8.700 | 2.960 | 1,800 | 8.5 | 8.75 | 0.318 | 8,316 | 0.318 | | Tarauya
Mijamoto | TirgeA | | UPI - | 1 | | - NAdm | | | - | | Asede 2022 | - Mouse | - Unsurveyed | | 1 | | 200 | The Journal of
Neuroscience | Never | 74Adm (00/00)
(Aseda, 2002) | MOH_PRIMA | [Asece.
2002] | 1.000 | 1,900 | 9 900 | 0.000 | 8.8 | 4.1 | 2.000 | 8 200 | 8.000 | | Tetavye
Styamote | TNOM | | mar . | | · La | - SA_FMF | | BA. | | | Dunkro: 2014 | Mouse | - Unsurveyed 1 | | - 2 | | 2000 | Neuron | Rayles | SA, Fear
(02/03)
(Dvsans: 2014) | La_FeadA_Fe
ar | Duers,
2014 | E.700 | 8 700 | 0.010 | 0.800 | 9.6 | 4.1 | 0.210 | 0.019 | 0.010 | | Tatauya
Myamoto | TNOM | | w . | | · u | - BA, Exe | | BA. | | | Dunaro, 2014 | Mouse | - Unsurveyed | | | | 200 | Neuron | Reven | 8A_Ext (00/00)
(Division, 2014) | La_FeediA_Si | (Duverti,
2014) | 8.700 | 8.700 | 2360 | 0.800 | 8.5 | 4.1 | 0.014 | 8316 | 0.010 | | Tarauya
Vilyamoto | TNON | | | | | - NAon | | | | | Duvaro, 2014 | | - Unautweet | | 100 | | 200 | Neuron | Причен | (Duvero, 2014) | | 2014 | | 1 000 | | | 0.0 | | 1000 | 9 007 | | | Wyamote | Thigh | | in . | | | - BA_De | | | | | Haghara, 2021 | Mouse | - Optogenerio | | | | 200 | Natire | Eligarimental results | SA_Ext (14/14)
24ag/hara.
2021); | NAdreA_Ex | (Haghara,
2021) | 1,000 | 1.000 | 0 900 | 1,000 | 0.5 | .4.3 | 0.143 | 0.140 | 0,140 | | Tatauja
Mijamoto | THOM | | *** | | | - Duhum | | | * | Measurement,
method
antenigrate tracing | Haghara, 2021 | + Mouse | - Ameropade | | t | | 200 | Nature | Experimental results | fishim (2000)
34agharu,
2021]Sheasure
ment method
antengrate
traong | NidenTulum | Pagnara
(2007) | 1,000 | 1.000 | 0.040 | 1.000 | 0.6 | . 8.0 | 0.288 | 0.286 | 0.265 | | Televye
Myemoto | Turg-
care | | | | | - NASH | | | • | Measurement
method,
anterograms tracing | надлачи. 2021 | + Mouse | . · Nerograde 1 | | - 1 | | 200 | Nature | Esperimental results | Stage (40:40)
Haghara
2021 Shassure
ment method
anteropera
tracop | (Number | praghara
2007) | 1,000 | 1.000 | 0.040 | 1.000 | 0.0 | | 0.476 | 0.476 | 0.479 | | Tatavya
Myamoto | fucie
care | | | | | - BA_Fast | | | * | | надлага. 2021 | - Mouse | Optogenation | | | | 200 | tours | Ergenmental results | BA_Fear
(14/14)
(14ghara
2021) | NAMBA,Fee | Plaghara.
2001) | 1,000 | 1 000 | 2360 | 1.000 | 0.5 | .8,3 | 0.143 | 0.143 | 0.143 | | Tetavye
Myemoto | Turge
care | | Con 1 | | - CA1 | - BA_Fear | | BA. | * | | Prisaren, 2000 | Mouse | - Unsurveyed 1 | | | | 20000 | Fula morphoto | Review | EA_Fear
(02/02)
(Plospher,
2000) | CA1_Contents
A_Fear | (Pinanen,
2000) | E.700 | 8.700 | 1.000 | 8.800 | 0.6 | 4.1 | 0.010 | 0.019 | 0.010 | | Tatecye
Myemoto | TNO
date | | _Con = | | - CAS | - BA_Ele | | BA . | - | | Piskiner, 2000 | Mouse | - Unsurveyed | | | | pocus | Folia morpholo | Peren | | CA1_ContentS
A_Ent | Progress
2000] | 8.700 | 5.700 | 0.000 | 0.000 | 8.5 | 9.5 | 0.016 | 0.010 | 0.010 | | Tatauya
Myamoto | THO | | Est - | · « | - 8A | - Julium | | | - | | Dukansi 2014 | - Voyee | - Unsurveyed | | | | 200 | Neuron | Reven | Pulum (03/03)
[Duverol, 2014] | BA_ExtNum | Dwars.
2014[| E 700 | 1,000 | 0.010 | 0.000 | 9.6 | 9.1 | 0.027 | 9.527 | 0.027 | | Tataupia
Miyamoto | This
care | | 1 | | " BA | - 06m | | QE: | * | | Duars, 2014 | - Mouse | - hemonet | | - 33 | | 200 | Neuron | Расии | CEm (05/00)
(Duverol 2014) | BA, FeeCEn. | (Duvert),
2014) | 8.700 | 1,500 | 2 900 | 0.000 | - 0.5 | 9.1 | 9424 | 0.027 | 0.007 | | Tatavye
Myemoto | / | #### Overview of the Data and the Constructed FRG C.Input-Normalization C.Switching C.Input-Normalization -this-1 C.relay -this-1 U.La-Fear U.BA-Ext U.INAdm U.INAvm U.BA-Fear We constructed the FRG by exhaustively applying the functions of motifs to the neural nuclei and connections in the BIF. #### Overview of the Data and the Constructed FRG | | Annual Contract | Onutio | Property | Cropsing
Crossing
Crossing | Uniform Dream | mput Circuits | Cubul Drus | | Interest | Controllers | Output Dresd | Soll Maryel
Subset Droub
Extendence | - | Ingenetator | Copelitify
Sectionist by
make resistant
Culti | Councilly Restantion by
Improvedints | Importantial of
Confiner Consult | Describ | |-----------------|--|----------|------------------------|----------------------------------|----------------------------|--|---|----------------------------|--|---|--|---|--|--|--|--|--|---| | Appl for south | (19) Mur
(1 App da (| | | | E A | O. Town | (Str.)
Asset: | 20,000 | 1000
1000
1000 | or Free | 272 | Marin
Marin
Marin
Minari
Minari
Minari | 64 Plan M. Bill Miller
C You New Jones (1996)
1 to New Chill Someon
1 to New Chill Someon | March Spiriters on Pro-
let Annual Spiriters of Con-
let Annual Spiriters of Con-
traction (Co.) (Spiriters) | | Bookston, in Mindram pro-ministry, it was pro-ministry, it was a second pro-ministry of the o | | II. Novimber spraced on: About the code N: 100miles believed worlds.A. | | auptu- | - 9-44
- 44.0 | 1 | | | N. SA
Maler | List Floris,
millionis
Cort, Scottanis | E | M. M. | La Pare
Distriction
Distriction
Distriction | A Same
Males
Sales Garban
Sales Sales
Sales Sales | and the second | Special
Special
Str. Past | (M. Ris Nation) +
In Olderton I in Reportation (Int Justice) | (All Anni I colonidat in Proc.
Section Colonidat in Proc.
Section (Colonidat in Proc.
Section (Colonidat in Proc. | | The Employees Record region is
described in the Control of the Association
for the appointment occurrence. | | C. Once Therefore A recording
single and traped fact on region of
the lead. | | do-1 | in Laterage
in the date
in defeate | | | | In Fast
N. Sec
Selan | NO. THE
WORLD PRO-
COLUMN TO SERVICE AND ADDRESS OF
MARKET PRO-
COLUMN TO SERVICE AND ADDRESS OF THE
MARKET PRO-
MARKET P | M. Park | 14 Flor
20, 542
2004 | Min Table
Min Table
Min Pile
In Pile
Min Commit
Manh | Min. 1940
Miller Step
Lot Fried
Miller
Col. Common
Lot Fried
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Miller
Mill | MA Free
SM, SM,
SMSC
SMSC
SMSC | 1000 | Corporation (Section) Corporation (Section) No. Section (Section) Corp. (Section), Sphiling Corp. (Section), Sphiling) | Top New Yorks Pleas NCs, This Sept. (No. 1) And the | | Replace In Bridge and Freedom,
A., Mylan's species also the electrical of
logical Control of the electrical species
on the electrical and the electrical species
on the electrical species of the electrical
control of the electrical species of the electrical
processing of the electrical species of the elec- | | C Publisher Street St. March To. 1985. | | , between the f | in Albania
In Albania | | | | Page 1 | MA SAN
SAN PROPERTY OF SAN PARKET
SAN PARKET SAN PARKET
SAN PARKET SAN | 1000 | - | 10 May | Mines
Mr. Dari
La, Vasin
Milest
Milest
Miles Pitte | 199 | 100 | Control March 10
Control March 50, Sel
La, Fee (604, 750) | Balan 1 (J. Rahan) Balan
Balan 1 (J. Balan) I.a. Peak
 Balan 1 (J. Balan) I.a. Peak | | The discretization of the 2 and 2 and a social systems of the 2 and a social systems of the 2 and a social system of the 2 and | | 2. Authory facts between two
Stocks | | La Prec | | in her | ACTOR
ACTOR
PROD | | 14 Peri | 100 | Sel Francisco
Sel Francisco
September 2 | his Prof. | | | 00, Fast
00, Sta | 01.700
01.700
01.700
01.700 | List Age of Constitution (Constitution Constitution (Constitution (Const | List Apper North Control (Males Cont | | Major the representative of cycl II.
Major that I have been signed. | COMMENT
COME NAME
COME (Mile) | Index Assert Money & Span Arm
Son, Forting Indexes angless formal
sensets along terring least or
harmer stronger | | Ashar- | | Shirt | Air des.
Sellers. | | Assau | A Face
Miles
Miles (Fee | St. Sec. | and . | | | ar ha | 25 | Private in Colleges | C March - Book Flori C March
C Miller FML | | Umali en philip be provided | California
Vicina Poet
Udiporti
Udiporti
Udiporti | California Warris Stifferiori
Hillian Said Austral World I
Hillian in projector longita | | Abor | | NA. | Priority
BIT, Fluid | | Philips - | 20,00 | Material
M. Fast | and a | | | 272 | Million
M. Park | (Advisory or Company)
Section (March Section) | S About 1 Statement S Sec., State | | | CRAAL
CRAAL
CRAAL | Colorego Neurosa (1996/a)us
relatino facilia funtida Neuro I
relatino di protecher langua. | | (Markey) | | M, Ped | 1000 | | SI, For | 100 | 194 | 91, Feb | | | * | - | (All from) in plant from
the figure follows
(All Content) | 1-104, Peter V
Peter Service Recommendation N
or 10 Meter 1-1-104, (Service) | | The excitation rights of rights 1 entry and 1 entry are the extended out of the entry that are settled. | 1:50 Fear V
Manufact Resid to
Sentange Fear
1:50 Committee | C, Marveta Brigger Allertagless
Martineg ingrisse erigezete, kurleg
conditioning provinces | | 80.400 | | M,Sal T | Hillan; | | Sel, See | in Park
Select
Dr., Select | MALE: | 80,80 | | | No. | Marin. | Str. Bar (11)-Str. Bar)
La Alab Street
Col (Cordon) | In State of Management (I.S. | | The decomposition of model is and if you continued and the representations of input in the decomposition decom | CBC No
Recorded Record No
recorded Annual Francisco
CBC Communication | C. Marriery Engage of principal
Senting replace angles is fully
parallel rep., ethiopsa. | | Chicana | | SAT, SAA | 10.00° | | CAT Circum | | 15.5
15.5 | CHI SHAM | | | Section 1 | 11.50 | | | | | | | | JACK THAI | | 61,340 | loi, Fee: | | 60,040 | | 54,700 | No.746 | | | in/hat | Lat, Franci | | | | | i. | | | - Stages Print | | Hor Per | us her. | | Min. Pin. | | La Francisco
Milatri | 100,70 | | | is Part
Marc | in free | - 6 | _ | | | | # -METHOD- **Data Creation Process** #### **BIF** Data and Collection Methods - La receives sensory information (CS and US) and facilitates Hebbian conditioning. (Duvarci, S., & Pare, D., 2014) - LA projects to the BA. BA contains BA_Fear (induces fear) and BA_Ext (extinction learning). (Amano, T. et al.,,2011) - BA projects to the **CEm**, which is involved in inducing the fear response. (Duvarci, S., & Pare, D., 2014) - INA and CA1 serve as modulators of the BA. (Hagihara,K.M., et al, 2021, Duvarci, S., & Pare, D., 2014, Pitkänen, A. et al, 2000) #### **BIF** Data and Collection Methods - The BIF constructed with the TM24Amygdala project - Using this BIF, we construct the FRG. #### Toward the construction of the **FRG** using Motif #### **Motifs** - In this data paper, motifs are collected based on the references cited in the data papers. - Here are some examples. #### <Reference> - □ Luo, L. (2021). Architectures of neuronal circuits. - □ Luo, L. (2020). Principles of neurobiology. - □ Braganza, O., & Beck, H. (2018). The circuit motif as a conceptual tool for multilevel neuroscience. - □ C. Alex Goddard et al., (2014). Spatially reciprocal inhibition of inhibition within a stimulus selection network in the avian midbrain. ### Mechanism and Capability of Motif (example 1/3) node: Z1, Z2, Z3,.. Input: X1, X2, X3,.. Output: Y1, Y2, Y3,.. black arrow: excitatory signal blue arrow: inhibitory signal Output amount is adjusted. <M: Mechanism_Feedforward Inhibition> Signals flow feedforward from X1 to the next two nodes. Then, one node inhibits the output of the other node. <C: Capability_Input Normalization> The amount of the final output is regulated, indicating that the capability is input normalization. # Mechanism and Capability of Motif (example 2/3) <M: Mechanism_Internal Mutual Inhibition> The outputs within the motif have a mutual inhibitory relationship (from Z1 and Z2). <C: Capability_Switching> Only one output is strengthened, and it switches depending on the input, so the capability is described as switching. # Mechanism and Capability of Motif (example 3/3) C.Relay M.Feedforward-Excitation node: Z1, Z2, Z3,.. Input: X1, X2, X3,.. Output: Y1, Y2, Y3,.. black arrow: exciatory signal blue arrow: inhibitory signal <M: Mechanism_Feedforward Excitation> The input from X1 flows straight downstream. <C: Capability_Relay> Since the signal is simply passed along, the capability is named "relay." #### Exhaustive fitting of Motifs to BIF for FRG construction # Exhaustive fitting of Motifs to BIF for FRG construction #### Exhaustive fitting of Motifs to BIF for FRG construction #### Constructed FRG NCx_THM CA1_Context BA Ext MGm_PIN INA. INAdm INAvm C.Input-Normalization C.Switching C.Input-Normalization -this-1 -this-1 -this-2 YM24Amygdala ROI C.relay -this-1 U.BA-Ext U.La-Fear U.BA-Fear U.INAdm U.INAvm - By applying the motifs and building up their capabilities, the FRG is constructed as follows. - This time, We described the process of constructing the FRG using motifs and the BIF. Next time, I hope to talk about the significance and details of this FRG. # **Dataset Description** #### 3 Dataset Description Repository location BRA Editorial System (BRAES) https://sites.google.com/wba-initiative.org/braes/data Object name and versions Please refer to the "Project" sheet in the BRA data for the more detail of data summary. | Table 1: I | 3RA DATA S | UMMA | RY | |------------------|-------------|--------|-----------------| | BRA Data | | | | | Object Name | Template | Includ | ling Content(s) | | | | BIF | HCD/FRG | | YM24Amygdala.bra | version 2.0 | √ | √ | | Table | 2: BRA IMAGE SUMMARY | |---------------|-----------------------------------| | Graphic Files | : BIF Image, HCD Image, FRG Image | | File Type | Object Name | | BIF Image | YM24AmygdalaBIF.xml | | HCD Image | YM24AmygdalaHCD.xml | | FRG Image | YM24AmygdalaFRG.xml | Creation dates 2024-02-08 to 2024-06-30. Language English. License The open license under which the data has been deposited (CC-BY 4.0). Publication date 2024-07-01. #### Caveats for Data Usage - This BRA data focuses on the fear conditioning circuitry of the amygdala. - The BIF is constructed based on references within the BRA data. - This data suggests hypothetical FRGs, so careful consideration should be taken when utilizing the data - The motifs utilized to construct the FRG were organized based on the references cited in this paper.