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専攻︓理論神経科学

研究テーマ︓脳の知能が持つ普遍的な
特性を数学を使って表現すること

磯村 拓哉

研究の動機
• ⽣物のような⼈⼯知能を作りたい
• そのために⽣物の知能を理解したい

問い
• ⽣物の知能の本質的原理は︖
• ⽣物の脳が機械より優れている点は︖
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エネルギーを下げる

物理学
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無秩序・無規則 規則性・パターンが⽣まれる

分⼦科学研究所, ⽔が氷になるまで, https://www.youtube.com/watch?v=8eXdXHP5dk8



⾚ちゃん（学習前）

知能の科学
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知能が⽣まれる

エネルギーを下げる

⽣まれたばかりの脳の神経回路

学習

外界に適応した脳の神経回路

外界の情報をほとんど持っていない
外界に応じたパターンが⽣まれる

予測・洞察・創造ができるようになる



5/36

知能とはなにか︖

<<<脳の統⼀理論
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電気回路 神経細胞

神経活動

神経回路のコスト関数

神経活動

時間
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統計学的な推論（ベイズ推論）

期待値

期待値

⾃由エネルギー
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⾃由エネルギー原理

• Karl J. Fristonが提唱している脳の情報理論
• ⽣物の知覚や学習、⾏動は、変分⾃由エネルギーと呼ばれ

るコスト関数を最⼩化するように決まるとしている
• その結果、⽣物は変分ベイズ推論と呼ばれる統計学的な推

論を⾃⼰組織化的に⾏うとされている
Friston, Nat Rev Neurosci, 2010
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パラメータ !

s, "

⾃由エネルギー F⽣成モデル

# = E! − ln) *, ,, ! + ln. ,, !
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期待⾃由エネルギー G

隠れ状態 s

感覚⼊⼒ o

⾏動⽅策 /

事後期待値 s

好みの事前分布 C

10/26

s, "
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ヘルムホルツエネルギー 1 変分⾃由エネルギー ℱ

数学的に等価

最⼩化積分

神経活動の⽅程式 ベイズ推論
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脳が予測や学習
を⾏う⽅法

AIが予測や学習
を⾏う⽅法と同じ

Isomura & Friston, Neural Comput, 2020;   Isomura et al., Commun Biol, 2022



Synchronization of two metronomes, Filmed at Ikeguchi Laboratory
https://www.youtube.com/watch?v=feEBzjqishQ 12/26



SystemEnvironment

!"

Sensory input #

⾃⼰組織化系のベイズ⼒学︓どんな⼒学系もベイズ推論と⾒なせる
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対応するFokker-Planck⽅程式は次のHelmholtz energyを最⼩化している

1 3 4 , 5* = 6 4, 5* + 1
8 log 3 4

" #

状態の経路とパラメータのダイナミクスは虚数時間勾配法に従う
;$4 = −;#6 + <

$ = &!, (!!, ) where &! = ! 0 ≤ ,! ≤ ,

変分⾃由エネルギー ℱ = > , 5* = − log ?% >, 5* + log = > & '

ℱを最⼩化すると事後分布が得られる (ベイズの定理) = > = (! ', *+
(! *+

8 = 1のとき、1とℱは数式として等しい（⾃然同値）（c.f., 完備類定理）
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⼒学系の経路とパラメータが共通の1を最⼩化することを要請するだけで
計算機構が⾃⼰組織化(進化)的に創発する可能性を⽰唆



スケール or
抽象度

⾃由エネルギー原理
a.k.a. ベイズ⼒学

Spike-timing 
dependent plasticity

? ? ?

Hodgkin-Huxley eq.

発⽕率モデル

Ȧ = BCDE A, *

ヘッブ可塑性

Ḟ = ?GH × ?*,J
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H. von Helmholtz K. J. Friston

A. L. Hodgkin & A. F. Huxley

D. O. Hebb
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“Will it ever happen that mathematicians will know
enough about the physiology of the brain, and neuro-
physiologists enough of mathematical discovery, for effi-
cient cooperation to be possible?”

—Jacques Hadamard

I. WHAT ARE THE PRINCIPLES?

A. Introduction

Building dynamical models to study the neural basis
of behavior has a long tradition !Ashby, 1960; Block,
1962; Rosenblatt, 1962; Freeman, 1972, 2000". The un-
derlying idea governing neural control of behavior is the
three-step structure of nervous systems that have
evolved over billions of years, which can be stated in its
simplest form as follows: Specialized neurons transform
environmental stimuli into a neural code. This encoded
information travels along specific pathways to the brain
or central nervous system composed of billions of nerve
cells, where it is combined with other information. A
decision to act on the incoming information then re-
quires the generation of a different motor instruction set
to produce the properly timed muscle activity we recog-
nize as behavior. Success in these steps is the essence of
survival.

Given the present state of knowledge about the brain,
it is impossible to apply a rigorous mathematical analysis
to its functions such as one can apply to other physical
systems like electronic circuits, for example. We can,
however, construct mathematical models of the phenom-
ena in which we are interested, taking account of what is
known about the nervous system and using this informa-
tion to inform and constrain the model. Current knowl-
edge allows us to make many assumptions and put them
into a mathematical form. A large part of this review
will discuss nonlinear dynamical modeling as a particu-
larly appropriate and useful mathematical framework
that can be applied to these assumptions in order to

simulate the functioning of the different components of
the nervous system, to compare simulations with experi-
mental results, and to show how they can be used for
predictive purposes.

Generally there are two main modeling approaches
taken in neuroscience: bottom-up and top-down models.

• Bottom-up dynamical models start from a descrip-
tion of individual neurons and their synaptic connec-
tions, that is, from acknowledged facts about the de-
tails resulting from experimental data that are
essentially reductionistic !Fig. 1". Using these ana-
tomical and physiological data, the particular pattern
of connectivity in a circuit is reconstructed, taking
into account the strength and polarity !excitatory or
inhibitory" of the synaptic action. Using the wiring
diagram thus obtained along with the dynamical fea-
tures of the neurons and synapses, bottom-up models
have been able to predict functional properties of

FIG. 1. !Color online" Illustration of the functional parts and
electrical properties of neurons. !a" The neuron receives inputs
through synapses on its dendritic tree. These inputs may or
may not lead to the generation of a spike at the spike genera-
tion zone of the cell body that travels down the axon and trig-
gers chemical transmitter release in the synapses of the axonal
tree. If there is a spike, it leads to transmitter release and
activates the synapses of a postsynaptic neuron and the process
is repeated. !b" Simplified electrical circuit for a membrane
patch of a neuron. The nonlinear ionic conductances are volt-
age dependent and correspond to different ion channels. This
type of electrical circuit can be used to model isopotential
single neurons. Detailed models that describe the morphology
of the cells use several isopotential compartments imple-
mented by these circuits coupled by a longitudinal resistance;
these are called compartmental models. !c" A typical spike
event is of the order of 100 mV in amplitude and 1–2 ms in
duration, and is followed by a longer after-hyperpolarization
period during which the neuron is less likely to generate an-
other spike; this is called a refractory period.

1214 Rabinovich et al.: Dynamical principles in neuroscience

Rev. Mod. Phys., Vol. 78, No. 4, October–December 2006
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of spikes in the presynaptic and postsynaptic neurons may be used
in neural networks to decipher information encoded in spike
timing (Hopfield, 1995; Mainen and Sejnowski, 1995; de Ruyter
van Steveninck et al., 1997; Rieke et al., 1997) and to store
information relating to the temporal order of various synaptic
inputs received by a neuron during learning and memory (Ger-
stner and Abbott, 1997; Mehta et al., 1997)

In these cultures we found that only weak synaptic connections
are susceptible to synaptic potentiation by correlated spiking,
with a “cutoff” amplitude of !500 pA. Larger EPSCs may rep-
resent either higher average sizes of evoked synaptic currents at
individual synaptic contacts (boutons) made by the presynaptic
neuron or a larger number of boutons, or both. If higher ampli-
tude represents increased efficacy of individual boutons, then the
existence of the cutoff amplitude for LTP induction may indicate
that the machinery underlying the expression of synaptic poten-
tiation has been saturated. For example, the probability of pre-
synaptic vesicular fusion or the expression of new postsynaptic
glutamate receptors may have reached the maximal level sustain-
able by the cell. Because synaptic inputs that contribute to the
postsynaptic spiking fall into the “potentiation window” associ-
ated with the spikes, spontaneous spiking activity in these cul-
tures may have continuously potentiated these synapses to a
saturated level, resulting in failure in the induction of synaptic
potentiation in older cultures.

The cellular basis that gives rise to the critical window for the
induction of synaptic modifications remains to be determined.
The involvement of NMDA receptors in both potentiation and
depression suggests that elevation of cytosolic Ca 2" is critical in
the induction process, similar to that for synapses in the CA1
region of the hippocampus (Nicoll and Malenka, 1995). Action

potentials initiated during the critical time window after synaptic
activation but before the dissociation of glutamate from the
NMDA channel will lead to the opening of the channel (by
removing the Mg 2" block) and a localized surge of cytoplasmic
Ca2" (Connor et al., 1994). This NMDA receptor-mediated
Ca2" influx may also act cooperatively with Ca2" influx through
the voltage-dependent Ca2" channels to induce synaptic poten-
tiation (Eilers et al., 1995; Yuste and Denk, 1995; Magee and
Johnston, 1997). The finding of a reduced extent of synaptic
potentiation in the presence of L-type Ca2" channel blocker is
consistent with the latter findings. Although the off-rate of glu-
tamate from the NMDA receptor is much longer than 20 msec,
the requirement of multiple Ca 2" binding in the activation of
downstream effector molecules (e.g., calmodulin) could poten-
tially sharpen the time window of synaptic modification. Alterna-
tively, the dendritically expressed transient A-type K" channels
that can be inactivated by subthreshold EPSPs may also play a
role by limiting the back-propagation of dendritic action poten-
tials initiated outside the potentiation window (Hoffman et al.,
1997). In the case of negatively correlated spiking, spike-induced
Ca 2" elevation attributable to opening of Ca2" channels before
synaptic activation followed by a low-level Ca2" elevation attrib-
utable to subthreshold synaptic activation may be responsible for
the induction of synaptic depression. Indeed, blocking L-type
Ca 2" channels abolished the induction of LTD (Fig. 8). Interest-
ingly, binding of glutamate to NMDA receptors is also required
for the induction of LTD, although the membrane potential
remained at a relatively negative level after the spike. Taken
together, our results are consistent with the notion that spatial–
temporal patterns of postsynaptic Ca2" elevation are critical for
the induction of synaptic changes (Lisman, 1989; Malenka et al.,
1992; Neveu and Zucker, 1996). Finally, we noted that there was
a conspicuous absence of short-term potentiation or depression in
the present study. This can be accounted for by our use of
low-frequency stimulation, because short-term potentiation or
depression is known to result from changes in the presynaptic
transmitter supply after high-frequency stimulation (Zucker et
al., 1991).

The dependence of synaptic modifications on postsynaptic cell
type has been observed in the Schaffer collateral (McMahon and
Kauer, 1997) and the mossy fiber pathways (Maccaferri et al.,
1998) in hippocampal slices. In both studies, the standard proto-
col of high-frequency stimulation that normally induces LTP at
synapses onto pyramidal cells either had no effect or resulted in
persistent depression of synapses onto interneurons. Our results
showed that not only the induction of LTP is target-cell specific;
similar target specificity also exists for the induction of LTD. The
target specificity could result from differences in the postsynaptic
molecular machinery underlying synaptic modifications. For ex-
ample, both the ! isoform of calcium/calmodulin-dependent pro-
tein kinase II (CaMK II !) and the Ca2"/calmodulin-dependent
protein phosphatase 2B (calcineurin) appear to be absent in the
postsynaptic densities of glutamatergic inputs onto GABAergic
neurons in the cerebral cortex and hippocampus (Stevens et al.,
1994; Liu and Jones, 1996, 1997; Sı́k et al., 1998). Interestingly, in
parallel fiber synapses in the cerebellum-like electrosensory lobe
of the mormyrid electric fish, where postsynaptic targets are
GABAergic Purkinje-like cells, synaptic modifications can still be
induced. However, the dependence on the temporal order of
correlated presynaptic and postsynaptic spikes is opposite to that
reported here (Bell et al., 1997).

The general notion that correlated presynaptic and postsynap-

Figure 7. Critical window for the induction of synaptic potentiation and
depression. The percentage change in the EPSC amplitude at 20–30 min
after the repetitive correlated spiking (60 pulses at 1 Hz) was plotted
against the spike timing. Spike timing was defined by the time interval (#t)
between the onset of the EPSP and the peak of the postsynaptic action
potential during each cycle of repetitive stimulation, as illustrated by the
traces above. For this analysis, we included only synapses with initial
EPSC amplitude of $500 pA, and all EPSPs were subthreshold for data
associated with negatively correlated spiking. Calibration: 50 mV, 10
msec.

10470 J. Neurosci., December 15, 1998, 18(24):10464–10472 Bi and Poo • Spike Timing for LTP and LTD in Culture

スパイクタイミング依存
シナプス可塑性

Bi & Poo, J Neurosci, 1998

−20 0 20

0

20

Spike timing [ms]

Sy
na

pt
ic

 c
ha

ng
e

ベイズ⼒学
による理論予想
Isomura, arXiv, 2023

同じ形

1963年ノーベル賞



D. Binding and synchronization 1242
IV. Transient Dynamics: Generation

and Processing of Sequences 1244
A. Why sequences? 1244
B. Spatially ordered networks 1244

1. Stimulus-dependent modes 1244
2. Localized synfire waves 1247

C. Winnerless competition principle 1248
1. Stimulus-dependent competition 1248
2. Self-organized WLC networks 1249
3. Stable heteroclinic sequence 1250
4. Relation to experiments 1251

D. Sequence learning 1252
E. Sequences in complex systems with random

connections 1254
F. Coordination of sequential activity 1256

V. Conclusion 1258
Acknowledgments 1259
Glossary 1259
References 1260

“Will it ever happen that mathematicians will know
enough about the physiology of the brain, and neuro-
physiologists enough of mathematical discovery, for effi-
cient cooperation to be possible?”

—Jacques Hadamard

I. WHAT ARE THE PRINCIPLES?

A. Introduction

Building dynamical models to study the neural basis
of behavior has a long tradition !Ashby, 1960; Block,
1962; Rosenblatt, 1962; Freeman, 1972, 2000". The un-
derlying idea governing neural control of behavior is the
three-step structure of nervous systems that have
evolved over billions of years, which can be stated in its
simplest form as follows: Specialized neurons transform
environmental stimuli into a neural code. This encoded
information travels along specific pathways to the brain
or central nervous system composed of billions of nerve
cells, where it is combined with other information. A
decision to act on the incoming information then re-
quires the generation of a different motor instruction set
to produce the properly timed muscle activity we recog-
nize as behavior. Success in these steps is the essence of
survival.

Given the present state of knowledge about the brain,
it is impossible to apply a rigorous mathematical analysis
to its functions such as one can apply to other physical
systems like electronic circuits, for example. We can,
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will discuss nonlinear dynamical modeling as a particu-
larly appropriate and useful mathematical framework
that can be applied to these assumptions in order to

simulate the functioning of the different components of
the nervous system, to compare simulations with experi-
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the nervous system, to compare simulations with experi-
mental results, and to show how they can be used for
predictive purposes.

Generally there are two main modeling approaches
taken in neuroscience: bottom-up and top-down models.

• Bottom-up dynamical models start from a descrip-
tion of individual neurons and their synaptic connec-
tions, that is, from acknowledged facts about the de-
tails resulting from experimental data that are
essentially reductionistic !Fig. 1". Using these ana-
tomical and physiological data, the particular pattern
of connectivity in a circuit is reconstructed, taking
into account the strength and polarity !excitatory or
inhibitory" of the synaptic action. Using the wiring
diagram thus obtained along with the dynamical fea-
tures of the neurons and synapses, bottom-up models
have been able to predict functional properties of

FIG. 1. !Color online" Illustration of the functional parts and
electrical properties of neurons. !a" The neuron receives inputs
through synapses on its dendritic tree. These inputs may or
may not lead to the generation of a spike at the spike genera-
tion zone of the cell body that travels down the axon and trig-
gers chemical transmitter release in the synapses of the axonal
tree. If there is a spike, it leads to transmitter release and
activates the synapses of a postsynaptic neuron and the process
is repeated. !b" Simplified electrical circuit for a membrane
patch of a neuron. The nonlinear ionic conductances are volt-
age dependent and correspond to different ion channels. This
type of electrical circuit can be used to model isopotential
single neurons. Detailed models that describe the morphology
of the cells use several isopotential compartments imple-
mented by these circuits coupled by a longitudinal resistance;
these are called compartmental models. !c" A typical spike
event is of the order of 100 mV in amplitude and 1–2 ms in
duration, and is followed by a longer after-hyperpolarization
period during which the neuron is less likely to generate an-
other spike; this is called a refractory period.

1214 Rabinovich et al.: Dynamical principles in neuroscience
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2D Hodgkin-Huxley⽅程式

KL̇ ∝ B, L, C + N
Ċ ∝ B- L, C

フィッツフュー・南雲モデル
Canonical neuron model
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“理論上は”どんな神経回路もベイズ推論を⾏っている

神経活動 A
について積分

シナプス結合 F
について微分

変分⾃由エネルギー

ℱ =R
$B0

.
S$ T ln S$ − lnU T *$ − lnV

ベイズ推論

学習

⽣成モデルの
パラメータ U
について最⼩化

状態の期待値 S$
について最⼩化

神経細胞の活動
Ȧ ∝ −sig/0 A +F* + ℎ

シナプス結合の可塑性
1̇ ∝ 345	×3089 −ℎ0'5089:9;<

ヘルムホルツエネルギー

1 = W A
A

C
ln A

A − ln *
* − X0

X: YJ-.% -.%
-.& -.&

数学的に等価

等価

等価
Isomura & Friston, Neural Comput, 2020;   Isomura, Shimazaki & Friston, Commun Biol, 2022 17/26

/̅ = 1 − /, ?1+ = sig 1+ , C+ = ℎ+ − ln ?1+ 1



積分 定数の推定

回路構造の同定 微分

時間積分

実物脳（神経回路の活動） ⼈⼯脳（ベイズ推論）

神経細胞の活動を計測1

神経活動モデルの割り当て2

神経回路のコスト関数の同定3

⽣成モデル＆⾃由エネルギーの同定4

学習アルゴリズムの導出5

学習結果の予測6

⽣成モデルのリバース
エンジニアリング

実験結果の予測(診断)

数理的な等価性

⽣成モデルのリバースエンジニアリングを⽤いた検証

Isomura, Neurosci Res, 2022 18/26



培養神経回路における⾃由エネルギー原理の実証

19/26Isomura et al., PLoS Comput Biol, 2015;  Isomura & Friston, Sci Rep, 2018;  Isomura et al., Nat Commun, 2023



培養神経回路における⾃由エネルギー原理の実証
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two-photon uncaging. For optogenetic stimu-
lation of dopaminergic fibers, a Cre-dependent
adeno-associated virus (AAV) vector expressing
channelrhodopsin-2 (ChR2) was injected into
the ventral tegmental area (VTA) of DAT-Cremice

expressing Cre specific to dopaminergic neurons
(Fig. 1Aand fig. S1). Thedirectpathway–constituting
MSNs, which mainly express dopamine 1 recep-
tors (D1Rs) (13), were labeled by an AAV vector
with a specific promoter for D1R-MSNs (Fig. 1A

and fig. S1). In acute coronal slices, including
the nucleus accumbens (NAc) core, whole-cell
recordingswere obtained from the identifiedD1R-
MSNs. Dendritic spines were visualized by means
of two-photon microscopy (980 nm) detecting

SCIENCE sciencemag.org 26 SEPTEMBER 2014 • VOL 345 ISSUE 6204 1617

Fig. 2. Pharmacology
of spine enlargement
induced by STDP plus
DAopto with a 0.6-s
delay. (A) Time
courses of spine
enlargement induced
by STDP + DAopto with
a 0.6-s delay in the
absence (control, 24
spines, 7 dendrites)
and presence of
NMDAR antagonist
(50 mM D-AP5, 22 spines, 6 dendrites), CaMKII inhibitor (3 mM KN62, 23 spines, 6 dendrites), or protein synthesis inhibitor (5 mM
anisomycin, 25 spines, 6 dendrites). (B) Time courses of spine enlargement in the presence of D1R antagonist (3 mM SCH23390, 23 spines, 6
dendrites), D2R antagonist (10 mM sulpiride, 22 spines, 6 dendrites), or PKA inhibitor (10 mM PKI, in the pipette, 24 spines, 6 dendrites). (C) Time
courses of spine enlargement in the presence of inhibitory (100 mM, in the pipette, 24 spines, 6 dendrites) or control peptide for DARPP-32 (100 mM, in
the pipette, 24 spines, 6 dendrites). (D) Averaged volume changes in the absence and presence of the compounds. Data are presented as mean T

SEM. P = 3.4 × 10−6 with Kruskal-Wallis and *P = 0.023 (AP5), 0.023 (KN62), 0.037 (AIP) (fig. S5A), 0.023 (anisomycin), 0.035 (SCH23390), 0.023 (PKI),
0.037 (KT5720) (fig. S5A), and 0.023 (DARPP-32 inhibitory peptide) with Steel test.

Fig. 1. A temporal profile of dopamine actions on spine enlargement. (A)
Injection of AAV vectors for ChR2 and the D1R-MSN marker (PPTA-mCherry)
in 3-week-old DAT-Cre mice. (B) Selective stimulation of dopaminergic and
glutamatergic inputs by means of blue laser field irradiation to ChR2 and two-
photon uncaging of caged-glutamate at a single spine, respectively, in acute
slices of NAc obtained from 5- to 7-week-old mice. (C) An amperometric
measurement of dopamine (top) by carbon-fiber electrode and whole-cell
recording of glutamate-induced current (bottom, 2pEPSP) in identified
D1R-MSNs. (D) An STDP protocol with dopamine puff application. (E) Im-
ages of the dendritic spine (red arrowhead) that received STDP stimulation
in the presence of dopamine (100 mM). (F and G) Time courses of spine
enlargement in the presence [(F), 13 spines, 4 dendrites] and absence of

dopamine [(G), 58 spines, 14 dendrites]. (H) Amplitudes of spine enlarge-
ments with or without dopamine. **P = 0.0041 by Mann-Whitney U test. (I)
STDP with repetitive activation of dopaminergic fibers containing ChR2 (blue
lines) at 30 Hz, 10 times (DAopto). (J) Images of the dendritic spine (arrow-
head) that received STDP + DAopto with a delay of 1 s. (K to M) Time courses
of spine enlargement induced by STDP + DAopto at 1 s [(K), 48 spines, 14 den-
drites], –1 s [(L), 20 spines, 5 dendrites] and 5 s [(M), 28 spines, 7 dendrites]
after STDP onset. (N) Timings of DAopto application. (O) Increases in spine
volumes by STDP + DAopto plotted versus DAopto delay (fig. S2, A to C). Data are
presented as mean T SEM. P = 4.2 × 10−6 with Kruskal-Wallis and **P = 0.0018
(0.6 s) and 0.0027 (1 s) by Steel test in comparison with STDP in the absence
of DAopto. Scale bars, 1 mm.
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Delayed modulation of plasticity
Yagishita et al., Science, 2014

Canonical neural networks perform active inference

21/26Isomura et al., Commun Biol, 2022
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Equivalence between canonical NNs, Bayesian inference, and Turing machines
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Canonical neural networks can implement universal Turing machines

24/26Isomura, arXiv, 2024
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• ⾃由エネルギー原理︓全ての⽣物の知覚や学習、⾏動は、変分⾃由エネルギーを最⼩化
するように決まり、その結果ベイズ推論を⾃⼰組織化的に⾏うという主張。

• 等価性︓正準神経回路のダイナミクスは、変分⾃由エネルギーの最⼩化をしていると⾒
なすことができる。外界のベイズ推論を⾏うことは、神経回路の普遍的な特性。

• 実証実験︓いくつかの実験において、神経回路の⾃⼰組織化を理論的に定量予測可能。

• 完全性︓正準神経回路は神経活動と可塑性により万能チューリングマシンを実装可能。

まとめ
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展望︓脳型学習アルゴリズムのAI応⽤

26/26

現在のAIの学習アルゴリズム（バックプロパゲーション）は多くの訓練データと計算量が必要（データ枯渇問題）

脳のような効率良い学習アルゴリズム
⾼いデータ効率、ローカルな計算のみ、ノイズが⼤きくても可、逐次的に学習可、悪い解に陥ることを回避

バックプロパゲーション 予測符号化

別の脳型学習アルゴリズムの可能性
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